One of the concerns of adopting an e-voting systems in the pooling place of any critical elections is the possibility of compromising the voting machine by a malicious piece of code, which could change the votes cast systematically. To address this issue, different techniques have been proposed such as the use of vote verification techniques and the anonymous ballot techniques, e.g., Code Voting. Verifiability may help to detect such attack, while the Code Voting assists to reduce the possibility of attack occurrence. In this paper, a new code voting technique is proposed, implemented and tested, with the aid of an open source voting. The anonymous ballot improved accordingly the paper audit trail used in this machine. The developed system, which we called CVOTING, further demonstrated the efficacy of the Code Voting technique against systematic vote change attacks and provides some features to make it easily configurable for different elections and elections in countries with right-to-left and up-to-down languages.
The development of the internet of things (IoT) and the internet of robotics (IoR) are becoming more and more involved with our daily lives. It serves a variety of tasks some of them are essential to us. The main objective of SRR is to develop a surveillance system for detecting suspicious and targeted places for users without any loss of human life. This paper shows the design and implementation of a robotic surveillance platform for real-time monitoring with the help of image processing, which can explorer places of difficult access or high risk. The robotic live streaming is via two cameras, the first one is fixed straight on the road and the second one is dynamic with tilt-pan ability. All cameras have image processing capabilities t
... Show MoreEmotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In
... Show MoreIn the last few years, following the relative stability of the political, economic, and security environments, Iraq has embarked on a transformation towards an ambitious program of automation across various sectors. However, this automation program faces numerous challenges, including significant investments in technology and training, addressing social impacts, and combating widespread illiteracy
Geographical, economic, historical, environmental and security factors play a role in strengthening the drive towards union, as well as addressing the need to express regional and federal identity. This is a clear example of this tendency. One legal or one political system with the parts of this united personality retaining their privacy and identity, and there is a delegation to the central entity of the union with some of the common powers while retaining some powers for these parts or states, which means the availability of autonomy for the constituent states of the union and this is the most important characteristic of the federal states or federations It is the autonomy of each state or country participating in the union. Accordingly,
... Show MoreDust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system
... Show MoreA total of 247 specimens of the Mallard were collected from Baghdad city and kut City and 154 specimens the collection was started from October1999