The concept of fully pseudo stable Banach Algebra-module (Banach A-module) which is the generalization of fully stable Banach A-module has been introduced. In this paper we study some properties of fully stable Banach A-module and another characterization of fully pseudo stable Banach A-module has been given.
The Topography, Physical and Optical properties of as-deposited copper oxide CuO absorption layer sprayed using homemade fully computerized CNC spray pyrolysis deposition technique at different deposition speed are reported. These layers are characterized by UV-Visible spectrophotometer, optical microscope, and thickness monitor studies. The optical transmittance study indicates that these layer exhibit high absorption coefficient in the visible range. The optical band gap is found to be at about at speeds (3,6 mm/s). Better homogeneity in CuO layer is found at the speed 5 mm/s. The film thickness lies within the 129-412 nm range.
Let R be a commutative ring with identity, and W be a unital (left) R-module. In this paper we introduce and study the concept of a quasi-small prime modules as generalization of small prime modules.
Let R be a ring with identity and Ą a left R-module. In this article, we introduce new generalizations of compressible and prime modules, namely s-compressible module and s-prime module. An R-module A is s-compressible if for any nonzero submodule B of A there exists a small f in HomR(A, B). An R-module A is s-prime if for any submodule B of A, annR (B) A is small in A. These concepts and related concepts are studied in as well as many results consist properties and characterizations are obtained.
An -module is extending if every submodule of is essential in a direct summand of . Following Clark, an -module is purely extending if every submodule of is essential in a pure submodule of . It is clear purely extending is generalization of extending modules. Following Birkenmeier and Tercan, an -module is Goldie extending if, for each submodule of , there is a direct summand D of such that . In this paper, we introduce and study class of modules which are proper generalization of both the purely extending modules and -extending modules. We call an -module is purely Goldie extending if, for each , there is a pure submodule P of such that . Many c
... Show MoreLet R be an associative ring with identity and M a non – zero unitary R-module.In this paper we introduce the definition of purely co-Hopfian module, where an R-module M is said to be purely co-Hopfian if for any monomorphism f ˛ End (M), Imf is pure in M and we give some properties of this kind of modules.
An -module is called absolutely self neat if whenever is a map from a maximal left ideal of , with kernel in the filter is generated by the set of annihilator left ideals of elements in into , then is extendable to a map from into . The concept is analogous to the absolute self purity, while it properly generalizes quasi injectivity and absolute neatness and retains some of their properties. Certain types of rings are characterized using this concept. For example, a ring is left max-hereditary if and only if the homomorphic image of any absolutely neat -module is absolutely self neat, and is semisimple if and only if all -modules are absolutely self neat.
In this paper, we introduce the concepts of Large-lifting and Large-supplemented modules as a generalization of lifting and supplemented modules. We also give some results and properties of this new kind of modules.
his study aims to determine most stable isobar from some isobaric elements with mass number (A= 50-65 & 180-195). This aim achieved by, firstly: plot mass parabolas for these isobaric family, second: calculated the atomic number for most stable isobar (ZA) value. To plot the mass parabola, the binding energy (B.E) calculated from semi empirical formula for these isobars. The mass number (A) plotted as a function to the (ZA) for each range; we get a linear relationship between them. An empirical formula for the most stable isobar has been developed from this linear dependence. From the results, we can see that mass parabolas for isobaric elements with odd mass number (A) are different from the mass parabolas of even mass number (A) isobars,
... Show More