In this paper, we deal with games of fuzzy payoffs problem while there is uncertainty in data. We use the trapezoidal membership function to transform the data into fuzzy numbers and utilize the three different ranking function algorithms. Then we compare between these three ranking algorithms by using trapezoidal fuzzy numbers for the decision maker to get the best gains
The research aims at:
- Identifying the problems facing kindergarten teachers.
- Identifying the nature of the problems facing kindergarten teachers.
To achieve the aim of the research, the researcher prepared a questionnaire to identify the problems that face the teachers of kindergartens. The questionnaire was subjected to the consultation of a group of specialized expertise in the educational and psychological sciences to certify the propriety of the items of the questionnaire and it gained a rate of (80%), and the stability of the scale gained (0.91) and it stands for a correlation parameter with a statistical significance and it was calculated by using Person’s R Corre
... Show MoreThere Are Many Communities Suffering Of Unemployment Due To Has Great Social And Economic Impact, As Well As The Psychological Effects Devastating And Serious And That May Threaten States With Collapse And Leading Human Displacement And Loss And Crime, And Often Derive Unemployed People To Practice Bad Habits Such As Gambling, Alcohol And Drug Abuse To Escape From Their Reality To Their Concerns And Problems.
It Should Be Noted, That The Largest Percentage Of Unemployment In Developing Societies Represented By The Educated Class Of University Graduates, And This Is Something Painful.
The Unemployed Know That (Each Capable Of Working And Who Want To Look For And Accept Prevailing Bricks) Is Th
... Show MoreSimulated annealing (SA) has been an effective means that can address difficulties related to optimization problems. is now a common discipline for research with several productive applications such as production planning. Due to the fact that aggregate production planning (APP) is one of the most considerable problems in production planning, in this paper, we present multi-objective linear programming model for APP and optimized by . During the course of optimizing for the APP problem, it uncovered that the capability of was inadequate and its performance was substandard, particularly for a sizable controlled problem with many decision variables and plenty of constraints. Since this algorithm works sequentially then the current state wi
... Show MoreIn this paper, new approach based on coupled Laplace transformation with decomposition method is proposed to solve type of partial differential equation. Then it’s used to find the accurate solution for heat equation with initial conditions. Four examples introduced to illustrate the accuracy, efficiency of suggested method. The practical results show the importance of suggested method for solve differential equations with high accuracy and easy implemented.
In this paper, the exact solutions of the Schlömilch’s integral equation and its linear and non-linear generalized formulas with application are solved by using two efficient iterative methods. The Schlömilch’s integral equations have many applications in atmospheric, terrestrial physics and ionospheric problems. They describe the density profile of electrons from the ionospheric for awry occurrence of the quasi-transverse approximations. The paper aims to discuss these issues.
First, the authors apply a regularization meth
In this paper, a new class of nonconvex sets and functions called strongly -convex sets and strongly -convex functions are introduced. This class is considered as a natural extension of strongly -convex sets and functions introduced in the literature. Some basic and differentiability properties related to strongly -convex functions are discussed. As an application to optimization problems, some optimality properties of constrained optimization problems are proved. In these optimization problems, either the objective function or the inequality constraints functions are strongly -convex.
The aim of this paper is to approximate multidimensional functions f∈C(R^s) by developing a new type of Feedforward neural networks (FFNS) which we called it Greedy ridge function neural networks (GRGFNNS). Also, we introduce a modification to the greedy algorithm which is used to train the greedy ridge function neural networks. An error bound are introduced in Sobolov space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result in [1]).
In the present study, Čech fuzzy soft bi-closure spaces (Čfs bi-csp’s) are defined. The basic properties of Čfs bi-csp’s are studied such as we show from each Čfs bi-csp’s (