Preferred Language
Articles
/
bsj-2441
Enhanced Photocurrent of Titania Nanotube Photoelectrode Decorated with CdS Nanoparticles

In this work, CdS/TiO2 nanotubes composite nanofilms were successfully synthesized via electrodeposition technique. TiO2 titania nanotube arrays (NTAs) are commonly used in photoelectrochemical cells as the photoelectrode due to their high surface area, excellent charge transfer between interfaces and fewer interfacial grain boundaries. The anodization technique of titanium foil was used to prepare TiO2 NTAs photoelectrode. The concentration of CdCl2 played an important role in the formation of CdS nanoparticles. Field emission scanning electron microscopy (FESEM) shows that the CdS nanoparticles were well deposited onto the outer and inner of nanotube at 40 mM of CdCl2. X-ray diffraction (XRD) and energy dispersive X-ray (EDX) analyses were executed for the determination of the composition and crystalline structure of the synthesized samples. Furthermore, the data of EDX confirms the formation of titanium and oxygen for TiO2 nanotubes and cadmium and sulfide for CdS deposits. UV–visible diffuse reflectance spectroscopy (UV-DRS) displayed that CdS nanoparticle which deposited onto TiO2 NTAs causes a red-shift into the visible region. CdS/TiO2 NTAs sample prepared at 40 mM of CdCl2 showed maximum photocurrent of 1.745 mA cm-2 while the bare TiO2 NTAs showed 0.026 mA cm-1.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Apr 29 2021
Journal Name
Iraqi Journal Of Science
Enhancement of the Efficiency of the CZTS/Cds/Zno/ITO Solar Cell By Back Reflection and Buffer Layers Using SCAPS -1D

CZTS / CdS / ZnO / ITO solar cell was studied using Solar Cell Capacitance Simulato-1D (SCAPS-1D) program. We performed an improvement on the theoretical cell by increasing the doping and thickness of some layers. As a result, the efficiency was shifted from 2.18% to 6.17% and several back reflection layers (BSL) were introduced on the enhanced cell until. We obtained a highest conversion efficiency of 13.99%.  The best reflection layer (CZTSSe) was combined with the best buffer layer (CdSe), with thickness of 0.9µm, on the enhanced cell. Thereby, we obtained a cell with a conversion efficiency of 16.53%. A second improvement was made to the best obtained cell, where the CZTSSe with thickness of 0.05µm and the CdSe with thickness

... Show More
Scopus (12)
Crossref (12)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Dec 30 2018
Journal Name
Journal Of Engineering
Synthesis and Characterization of Titanium Dioxide Nanoparticles under Different pH Conditions

Ethanol as a solvent, a precursor of titanium isopropoxide and a stabilizer of either hydrochloric acid or ammonium hydroxide was used to prepare a titanium dioxide aqueous solution. The aqueous solutions with different values of pH and the morphology of the resultant reaction of the nanoparticles of titanium dioxide were investigated. The X-ray diffraction showed that at low temperatures and with acidic solutions, rutile structures are more favorable to grow on titanium dioxide synthesized, while at low and average temperatures and with base solutions, anatase phase is more pronounced. The crystalline form and the re-confirmation of the crystallite size growth were observed by the scanning electron microscopy. The atomi

... Show More
Crossref (4)
Crossref
View Publication Preview PDF
Publication Date
Tue Apr 06 2021
Journal Name
Journal Of Polymers And The Environment
Novel Sorbent of Sand Coated with Humic Acid-Iron Oxide Nanoparticles for Elimination of Copper and Cadmium Ions from Contaminated Water

Nanoparticles of humic acid and iron oxide were impregnated on the inert sand to produce sorbent for treating groundwater contained of cadmium and copper ions by technology of permeable reactive barrier (PRB). Sewage sludge was the source of the humic acid to prepare the coated sand by humic acid—iron oxide (CSHAIO) sorbent; so, this work is consistent with sustainable development. For 10 mg/L metal concentration, batch tests at speed of 200 rpm signified that the removal efficiencies are greater than 90% at sorbent dosage 0.25 g/ 50 mL, pH 6 and contact time 1 h. The kinetic data was well described by the Pseudo first-order model indicating that physicosorption is the predominant mechanism. The maximum adsorption capacities (qmax) were c

... Show More
Crossref (9)
Crossref
View Publication
Publication Date
Fri Mar 15 2024
Journal Name
Journal Of Baghdad College Of Dentistry
Assessment of the correlation between the tensile and diametrical compression strengths of 3D-printed denture base resin reinforced with ZrO2 nanoparticles

Background: The mechanical properties of 3D-printed denture base resins are crucial factors for determining the quality and performance of dentures inside a patient’s mouth. Tensile strength and diametral compressive strength are two properties that could play significant roles in assessing the suitability of a material. Although they measure different aspects of material behavior, a conceptual link exists between them in terms of overall material strength and resilience. Aim: This study aims to investigate the correlation between tensile strength and diametral compressive strength after incorporating 2% ZrO2 nanoparticles (NPs) by weight into 3D-printed denture base resin. Methods: A total of 40 specimens (20 dumbbell-shaped and

... Show More
Scopus Crossref
Publication Date
Wed Jan 06 2021
Journal Name
Pierm
ULTRA-WIDEBAND FEATURING ENHANCED DELAY AND SUM ALGORITHM AND ORIENTED FOR DETECTING EARLY STAGE BREAST CANCER

Abstract—In this study, we present the experimental results of ultra-wideband (UWB) imaging oriented for detecting small malignant breast tumors at an early stage. The technique is based on radar sensing, whereby tissues are differentiated based on the dielectric contrast between the disease and its surrounding healthy tissues. The image reconstruction algorithm referred to herein as the enhanced version of delay and sum (EDAS) algorithm is used to identify the malignant tissue in a cluttered environment and noisy data. The methods and procedures are tested using MRI-derived breast phantoms, and the results are compared with images obtained from classical DAS variant. Incorporating a new filtering technique and multiplication procedure, t

... Show More
Publication Date
Sun Oct 30 2022
Journal Name
Iraqi Journal Of Science
Power-Efficient Virtual Machine Placement in Cloud Datacenters using Heuristic Assisted Enhanced Discrete Particle Swarm Optimization

    The increase in cloud computing services and the large-scale construction of data centers led to excessive power consumption. Datacenters contain a large number of servers where the major power consumption takes place. An efficient virtual machine placement algorithm is substantial to attain energy consumption minimization and improve resource utilization through reducing the number of operating servers. In this paper, an enhanced discrete particle swarm optimization (EDPSO) is proposed. The enhancement of the discrete PSO algorithm is achieved through modifying the velocity update equation to bound the resultant particles and ensuring feasibility. Furthermore, EDPSO is assisted by two heuristic algorithms random first fit (RFF) a

... Show More
Crossref
View Publication
Publication Date
Sat Jan 20 2024
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Enhanced Support Vector Machine Methods Using Stochastic Gradient Descent and Its Application to Heart Disease Dataset

Support Vector Machines (SVMs) are supervised learning models used to examine data sets in order to classify or predict dependent variables. SVM is typically used for classification by determining the best hyperplane between two classes. However, working with huge datasets can lead to a number of problems, including time-consuming and inefficient solutions. This research updates the SVM by employing a stochastic gradient descent method. The new approach, the extended stochastic gradient descent SVM (ESGD-SVM), was tested on two simulation datasets. The proposed method was compared with other classification approaches such as logistic regression, naive model, K Nearest Neighbors and Random Forest. The results show that the ESGD-SVM has a

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Dec 15 2023
Journal Name
Iraqi Journal Of Laser
Silver Nanoflowers as an Interfacial Liquid-State Surface Enhanced Raman Spectroscopy (SERS) Sensor for Water Pollution

Water pollution has created a critical threat to the environment.‎‎ A lot of research has been done ‎recently to use surface-enhanced Raman spectroscopy (SERS) to detect multiple pollutants in water. This study aims to use Ag colloid nanoflowers as liquid SERS enhancer. Tri sodium phosphate (Na3PO4) was investigated as a pollutant using liquid SERS ‎based on colloidal Ag ‎nanoflowers. The chemical method was used to synthesize nanoflowers from silver ‎ions. Atomic Force Microscope (AFM), Scanning Electron Microscope (SEM), and X-ray diffractometer (XRD) were employed to characterize the silver nanoflowers. This ‎nanoflowers SERS action in detecting Na3PO4 was reported and analyzed

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Oct 01 2024
Journal Name
Journal Of Engineering
A Comprehensive Review for Integrating Petrophysical Properties, Rock Typing, and Geological Modeling for Enhanced Reservoir Characterization

Reservoir characterization is an important component of hydrocarbon exploration and production, which requires the integration of different disciplines for accurate subsurface modeling. This comprehensive research paper delves into the complex interplay of rock materials, rock formation techniques, and geological modeling techniques for improving reservoir quality. The research plays an important role dominated by petrophysical factors such as porosity, shale volume, water content, and permeability—as important indicators of reservoir properties, fluid behavior, and hydrocarbon potential. It examines various rock cataloging techniques, focusing on rock aggregation techniques and self-organizing maps (SOMs) to identify specific and

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Abu Dhabi International Petroleum Exhibition & Conference
Influence of pressure and temperature on CO2-nanofluid interfacial tension: Implication for enhanced oil recovery and carbon geosequestration

Nanoparticles (NPs) based techniques have shown great promises in all fields of science and industry. Nanofluid-flooding, as a replacement for water-flooding, has been suggested as an applicable application for enhanced oil recovery (EOR). The subsequent presence of these NPs and its potential aggregations in the porous media; however, can dramatically intensify the complexity of subsequent CO2 storage projects in the depleted hydrocarbon reservoir. Typically, CO2 from major emitters is injected into the low-productivity oil reservoir for storage and incremental oil recovery, as the last EOR stage. In this work, An extensive serious of experiments have been conducted using a high-pressure temperature vessel to apply a wide range of CO2-pres

... Show More