In this work, CdS/TiO2 nanotubes composite nanofilms were successfully synthesized via electrodeposition technique. TiO2 titania nanotube arrays (NTAs) are commonly used in photoelectrochemical cells as the photoelectrode due to their high surface area, excellent charge transfer between interfaces and fewer interfacial grain boundaries. The anodization technique of titanium foil was used to prepare TiO2 NTAs photoelectrode. The concentration of CdCl2 played an important role in the formation of CdS nanoparticles. Field emission scanning electron microscopy (FESEM) shows that the CdS nanoparticles were well deposited onto the outer and inner of nanotube at 40 mM of CdCl2. X-ray diffraction (XRD) and energy dispersive X-ray (EDX) analyses were executed for the determination of the composition and crystalline structure of the synthesized samples. Furthermore, the data of EDX confirms the formation of titanium and oxygen for TiO2 nanotubes and cadmium and sulfide for CdS deposits. UV–visible diffuse reflectance spectroscopy (UV-DRS) displayed that CdS nanoparticle which deposited onto TiO2 NTAs causes a red-shift into the visible region. CdS/TiO2 NTAs sample prepared at 40 mM of CdCl2 showed maximum photocurrent of 1.745 mA cm-2 while the bare TiO2 NTAs showed 0.026 mA cm-1.
This work aims to fabricate two types of plasmonic nanostructures by electrical exploding wire (EEW) technique and study the effects of the different morphologies of these nanostructures on the absorption spectra and Surface-Enhanced Raman Scattering (SERS) activities, using Rhodamine 6G as a probe molecule. The structural properties of these nanostructures were examined using X-Ray diffraction (XRD). The morphological properties were examined using field emission scanning electron microscopy (FESEM) and scanning transmission electron microscopy (STEM). The absorption spectra of the mixed R6G laser dye (concentration 1×10-6 M) with prepared nanostructures were examined by double beam UV-Vis Spectrophotometer. The Raman spe
... Show MoreText documents are unstructured and high dimensional. Effective feature selection is required to select the most important and significant feature from the sparse feature space. Thus, this paper proposed an embedded feature selection technique based on Term Frequency-Inverse Document Frequency (TF-IDF) and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) for unstructured and high dimensional text classificationhis technique has the ability to measure the feature’s importance in a high-dimensional text document. In addition, it aims to increase the efficiency of the feature selection. Hence, obtaining a promising text classification accuracy. TF-IDF act as a filter approach which measures features importance of the te
... Show MoreThe alfalfa plant, after harvesting, was washed, dried, and grinded to get fine powder used in water treatment. We used the alfalfa plant with ethanol to make the alcoholic extract characterized by using (GC-Mass, FTIR, and UV) spectroscopy to determine active compounds. Alcoholic extract was used to prepare zinc nanoparticles. We characterized Zinc nanoparticles using (FTIR, UV, SEM, EDX Zeta potential, XRD, AFM). Zinc nanoparticle with Alfalfa extract and alfalfa powder were used in the treatment of water polluted with inorganic elements such as Cr, Mn, Fe, Cu, Cd, Ag by (Batch processing). The batch process with using alfalfa powder gets treated with Pb (51.45%), which is the highest percentage of treatment. Mn (13.18%), which is the
... Show MoreA new benzylidene derivative, namely N-benzylidene-5-phenyl-1,3,4-thiadiazol-2-amine (BPTA), has been synthesized and instrumentally confirmed with Elemental Analysis (CHN), Nuclear Magnetic Resonance (NMR), and Fourier Transform Infrared Spectroscopy (FT-IR). Titanium Dioxide (TiO2) nanoparticles (NPs) were synthesized and characterized by X-ray. The mutualistic complementary dependence of BPTA with TiO2 nanoparticles as anti-corrosive inhibitor on mild steel (MS) in 1.0 M hydrochloric acid has been tested at various concentrations and various temperatures. The methodological work was achieved by gravimetric measurement methods complemented with surface analysis. The synthesized inhibitor concentrations were 0.1 mM to 0.5 mM and the temper
... Show MoreThis paper include the problem of segmenting an image into regions represent (objects), segment this object by define boundary between two regions using a connected component labeling. Then develop an efficient segmentation algorithm based on this method, to apply the algorithm to image segmentation using different kinds of images, this algorithm consist four steps at the first step convert the image gray level the are applied on the image, these images then in the second step convert to binary image, edge detection using Canny edge detection in third Are applie the final step is images. Best segmentation rates are (90%) obtained when using the developed algorithm compared with (77%) which are obtained using (ccl) before enhancement.
Cloud Computing is a mass platform to serve high volume data from multi-devices and numerous technologies. Cloud tenants have a high demand to access their data faster without any disruptions. Therefore, cloud providers are struggling to ensure every individual data is secured and always accessible. Hence, an appropriate replication strategy capable of selecting essential data is required in cloud replication environments as the solution. This paper proposed a Crucial File Selection Strategy (CFSS) to address poor response time in a cloud replication environment. A cloud simulator called CloudSim is used to conduct the necessary experiments, and results are presented to evidence the enhancement on replication performance. The obtained an
... Show MoreThe modification of hydrophobic rock surfaces to the water-wet state via nanofluid treatment has shown promise in enhancing their geological storage capabilities and the efficiency of carbon dioxide (CO2) and hydrogen (H2) containment. Despite this, the specific influence of silica (SiO2) nanoparticles on the interactions between H2, brine, and rock within basaltic formations remains underexplored. The present study focuses on the effect of SiO2 nanoparticles on the wettability of Saudi Arabian basalt (SAB) under downhole conditions (323 K and pressures ranging from 1 to 20 MPa) by using the tilted plate technique to measure the contact angles between H2/brine and the rock surfaces. The findings reveal that the SAB's hydrophobicity intensif
... Show MoreMagnetized iron oxide nanoparticles (NPs) were prepared using Eucalyptus leaf extract and then coated with CTAB (Cetrimonium bromide) to increase efficiency. The prepared and modified (NPs) were characterized using AFM, FTIR, and X-ray techniques. The adsorption of the dye reactive blue RB 238 on coated (NPs) was investigated. The effect of various experimental factors, such as the initial concentration of the dye, the amount of adsorbent, pH and temperature on the removal of RB238 was studied. The best conditions for dye removal were found to be 298 K in an acidic medium of pH = 3 and an appropriate dose of the adsorbent of 0.15 g per 25 mg/L to achieve the best color removal of 90% within 60 minutes. The pseudo-second-order re
... Show MoreThe direct electron transfer behavior of hemoglobin that is immobilized onto screen-printed carbon electrode (SPCE) modified with silver nanoparticles (AgNPs) and chitosan (CS) was studied in this work. Cyclic voltametry and spectrophotometry were used to characterize the hemoglobin (Hb) bioconjunction with AgNPs and CS. Results of the modified electrode showed quasi-reversible redox peaks with a formal potential of (-0.245V) versus Ag/AgCl in 0.1M phosphate buffer solution (PBS), pH7, at a scan rate of 0.1Vs-1. The charge transfer coefficient (α) was 0.48 and the apparent electron transfer rate constant (Ks) was 0.47s-1. The electrode was used as a hydrogen peroxide biosensor with a line
... Show More