Ankylosing spondylitis is a complex debilitating disease because its pathogenesis is not clear. This study aims at detecting some pathogenesis factors that lead to induce the disease. Chlamydia pneumoniae is one of these pathogenesis factors which acts as a triggering factor for the disease. The study groups included forty Iraqi Ankylosing spondylitis patients and forty healthy persons as a control group. Immunological and molecular examinations were done to detect Chlamydia. pneumoniae in AS group. The immunological results were performed by Enzyme-Linked Immunosorbent Assay (ELISA) to detect anti-IgG and anti-IgM antibodies of C. pneumoniae revealed that five of forty AS patients' samples (12.5%) were positive for anti-IgG and IgM C. pneumoniae antibodies compared to controls which revealed seronegative. Molecular detection included 16srRNA and HSP-70 genes were to ensure the serological examination for detection of bacteria in the five blood samples which were positive; therefore, these results improved that C. pneumoniae played a role in the pathogenesis of the disease
Detecting the optimum layer for well placement, which requires a diverse assortment of tools and techniques, represents a significant challenge in petroleum studies due to its critical impact on minimizing drilling costs and time. This study aims to evaluate integrated geological, petrophysical, seismic, and geomechanical data to identify the optimum zones for well placement. Three different reservoirs were analyzed to account for lateral and vertical variations in reservoir properties. The integrated data from these reservoirs provides many tools for reservoir development, especially to detect appropriate well placement zones based on evaluations of reservoir and geomechanical quality. The Mechanical Earth Model (MEM) was construct
... Show MoreStereolithography (SLA) has become an essential photocuring 3D printing process for producing parts of complex shapes from photosensitive resin exposed to UV light. The selection of the best printing parameters for good accuracy and surface quality can be further complicated by the geometric complexity of the models. This work introduces multiobjective optimization of SLA printing of 3D dental bridges based on simple CAD objects. The effect of the best combination of a low-cost resin 3D printer’s machine parameter settings, namely normal exposure time, bottom exposure time and bottom layers for less dimensional deviation and surface roughness, was studied. A multiobjective optimization method was utilized, combining the Taguchi me
... Show MoreLaboratory model tests were performed to investigate the behavior of shallow and inclined skirted foundations placed on sandy soil with R.D%=30 and the extent of the impact of the positive and negative eccentric-inclined loading effect on them. To achieve the experimental tests, it was used a box of (600×600) mm cross-sectional and 600mm in height and a square footing of (50*50) mm and 10 mm in thickness attached to the skirt with Ds=0.5B and various an angle of (10°, 20°, 30°). The results showed that using skirts leads to a significant improvement in load-carrying capacity and decreased settlement. In addition, when the skirt angle increased, the ultimate load improved. Load-carrying capacity decreased with increasing eccentri
... Show MoreThe current research tackles the self-efficacy and its relation to the cognitive assessment for the daily disturbances for the University of Baghdad students. Two criteria have been adopted to achieve the objectives of the research. The sample of this study consists of 200 male and female students who were chosen randomly. The data were analyzed statistically, revealing that the university students owned their own self-efficacy as well as a cognitive assessment for the daily disturbances and they recognized them as self-threatening. The results also indicated the existence of a prediction activity in the field of the cognitive assessment to the daily disturbances selection. In light of the acquired results, the study recommends the neces
... Show MoreOne of the main parts in hydraulic system is directional control valve, which is needed in order to operate hydraulic actuator. Practically, a conventional directional control valve has complex construction and moving parts, such as spool. Alternatively, a proposed Magneto-rheological (MR) directional control valve can offer a better solution without any moving parts by means of MR fluid. MR fluid consists of stable suspension of micro-sized magnetic particles dispersed in carrier medium like hydrocarbon oil. The main objectives of this present research are to design a MR directional control valve using MR fluid, to analyse its magnetic circuit using FEMM software, and to study and simulate the performance of this valve. In this research, a
... Show MoreIn this work, the calculation of matter density distributions, elastic charge form factors and size radii for halo 11Be, 19C and 11Li nuclei are calculated. Each nuclide under study are divided into two parts; one for core part and the second for halo part. The core part are studied using harmonic-oscillator radial wave functions, while the halo part are studied using the radial wave functions of Woods-Saxon potential. A very good agreement are obtained with experimental data for matter density distributions and available size radii. Besides, the quadrupole moment for 11Li are generated.