CdS films were prepared by thermal evaporation technique at thickness 1 µm on glass substrates and these films were doped with indium (3%) by thermal diffusion method. The electrical properties of these have been investigated in the range of diffusion temperature (473-623 K)> Activation energy is increased with diffusion temperature unless at 623 K activation energy had been decreased. Hall effect results have shown that all the films n-type except at 573 and 623 K and with increase diffusion temperature both of concentration and mobility carriers were increased.
In this work, nanostructured TiO2 thin films were grown by pulsed laser deposition (PLD) technique on glass substrates. TiO2 thin films then were annealed at 400-600 °C in air for a period of 2 hours. Effect of annealing on the structural and morphological were studied. Many growth parameters have been considered to specify the optimum conditions, namely substrate temperature (300 °C), oxygen pressure (10-2 Torr), laser fluence energy density (0.4 J/cm2), using double frequency Q-switching Nd:YAG laser beam (wavelength 532nm), repetition rate (1-6 Hz) and the pulse duration of 10 ns. The results of the X-ray test show that all nanostructures tetragonal are polycrystalline. These results show that grain size increase fr
... Show MoreIn this research, we study the changing structural properties of ZnO with changing annealing temp., in the range (473-773)K prepared by chemical bath deposition method at temp. (353)K, where deposited on glasses substrates at thickness (500±25)nm, the investigation of (XRD) indicates that the (ZnO) films are polycrystalline type of Hexagonal.
The results of the measuring of each sample from grain size, microstrain, dislocation density, integral breadth, shape factor and texture coefficient, show that annealing process leads to increase the grain size (26.74-57.96)nm, and decrease microstrain (0.130-0.01478), dislocation density (1.398-0.297)*1015
... Show MoreFullerene thin films of about 200 nm thicknesses have been deposited by thermal evaporation method on soda lime glass at substrate temperature 303 and 403K under pressure about 10-5 mbar. This study concentrated on the influence of substrate temperature on the optical properties of C60 thin films within the visible range. Optical characterization has been carried out at room temperature using the absorption spectra, at normal incidence, in range (200-900) nm.
The absorption and extinction coefficients of the samples have been evaluated according to the variation in the UV- Visible spectrum. Increasing substrate temperature causes decreasing in optical band gap energy, for direct allowed tran
... Show MoreThin filis have been prepared from the tin disulphide (SnS2 ), the pure and the doped with copper (SnS2:Cu) with a percentages (1,2,3,4)% by using ahemical spray pyrolysis techniqee on substrate of glass heated up to(603K)and sith thicknesses (0.7±0.02)?m ,after that the films were treated thermally with a low pressure (10-3mb) and at a temperature of (473K) for one hour. The influence of both doping with copper and the thermal treatment on some of the physical characteristics of the prepared films(structural and optical) was studied. The X-ray analysis showed that the prepared films were polycrystalline Hexagonal type. The optical study that included the absorptance and transmitance spectra in the weavelength range (300-900)nm
... Show MoreCdS and CdS:Sn thin films were successfully deposited on glass
substrates by spray pyrolysis method. The films were grown at
substrate temperatures 300 C°. The effects of Sn concentration on the
structural and optical properties were studied.
The XRD profiles showed that the films are polycrystalline with
hexagonal structure grown preferentially along the (002) axis. The
optical studies exhibit direct allowed transition. Energy band gap
vary from 3.2 to 2.7 eV.
This study describe the effect of temperature on the optical
properties of nickel(ii) phthalocyanine tetrasulfonic acid tetrasodium
salt (NiPcTs) organic thin films which are prepared by spin coating
on indium tin oxide (ITO-glass). The optical absorption spectra of
these thin films are measured. Present studies reveal that the optical
band gap energies of NiPcTs thin films are dependent on the
annealing temperatures. The optical band gap decreases with increase
in annealing temperature, then increased when the temperature rising
to 473K. To enhance the results of Uv-Vis measurements and get
more accurate values of optical energy gaps; the Photoluminescence
spectra of as-deposited and annealed NiPcTs thin fi
Thin films of Mn2O3 doped with Cu have been fabricated using the simplest and cheapest chemical spray pyrolysis technique onto a glass substrate heated up to 250 oC. Transmittance and absorptance spectra were studied in the wavelength range (300 -1100) nm. The average transmittance at low energy was about 60% and decrease with Cu doping, Optical constants like refractive index, extinction coefficient and dielectric constants (εr), (εi) are calculated and correlated with doping process.
Effect of [Cu/In] ratio on the optical properties of CuInS2 thin films prepared by chemical spray pyrolysis on glass slides at 300oC was studied. The optical characteristics of the prepared thin films have been investigated using UV-VIS spectrophotometer in the wavelength range (300-1100 nm). The films have a direct allow electronic transition with optical energy gap (Eg) decreased from 1.51 eV to 1.30 eV with increasing of [Cu/In] ratio and as well as we notice that films have different behavior when annealed the films in the temperature 100oC (1h,2h), 200oC (1h,2h) for [Cu/In]=1.4 . Also the extinction coefficient (k), refractive index (n) and the real and imaginary dielectric constants (ε1, ε2) have been investigated
In this research CdTe and CdTe: Cu thin films with different doping ratios (1, 2, 3, 4 and 5) %, were deposited by thermal evaporation technique under vacuum on glass substrates at room temperature in thickness 450 nm. The measurements of electrical conductivity (σ), and activation energies (Ea1, Ea2), have been investigated on (CdTe) thin films as a function of doping ratios, as well as the effect of the heat treatment at (373, 423, and 473) K° for one hour on these measurements were calculated and all results are discussed. The electrical conductivity measurements show all films prepared contain two types of transport mechanisms, and the electrical conductivity (σ) increases where
... Show More