The expanding of the medically important diseases created by multidrug-resistant Acinetobacter baumannii warrants the evolve a new methodology for prevention includes vaccination and treatment. Totally of forty-five clinical isolates identified as A.baumannii were obtained from hospitalized patients from three hospital in Baghdad City during the period from February 2016 to August 2016. Followed by diagnosing using different methods. Every strain was tested for susceptibility testing also some important virulence factorswere detected. Two isolates were chosen for the immunization and vaccine model, the first one remittent for most antibiotics except one are too virulence (strong) and the second is less virulent and resistance (weak).Enzyme-linked immunosorbent assaywas used for assessments of Toll like receptor 4,and Toll like receptor 2 concentrations in mouse serum at 14, 21 and 28 days of immunization. Results proved that the strong isolate showed resistance to all antibiotics except one and positive to all virulence factors except one, while the weak isolate resistance to Ceftriaxone, Cefotaxime, positive to tow virulence factors. Mice were intramuscular inoculated with strong and weak isolate. There are high significant differences when using strong A.baumannii strong in the level of TLR4 and there was not an important variation among the use of strong and weak isolation in the level of TLR2.Finaly,the yield refers to the TLR4 plays a key role in innate sensing with multidrug resistance isolate immunization, whereas TLR 2 shows it gives the same level of stimulation during immunization with both strains but lesser concentration than TLR4, so the inactivated with MDR isolate has a potential for development as a candidate vaccine for strong protection against MDR isolate infections.
Samples of gasoline engine oil (SAE 5W20) that had been exposed to various oxidation times were inspected with a UV-Visible (UV-Vis) spectrophotometer to select the best wavelengths and wavelength ranges for distinguishing oxidation times. Engine oil samples were subjected to different thermal oxidation periods of 0, 24, 48, 72, 96, 120, and 144 hours, resulting in a range of total base number (TBN) levels. Each wavelength (190.5 – 849.5 nm) and selected wavelength ranges were evaluated to determine the wavelength or wavelength ranges that could best distinguish among all oxidation times. The best wavelengths and wavelength ranges were analyzed with linear regression to determine the best wavelength or range to predict oxidation t
... Show MoreLong memory analysis is one of the most active areas in econometrics and time series where various methods have been introduced to identify and estimate the long memory parameter in partially integrated time series. One of the most common models used to represent time series that have a long memory is the ARFIMA (Auto Regressive Fractional Integration Moving Average Model) which diffs are a fractional number called the fractional parameter. To analyze and determine the ARFIMA model, the fractal parameter must be estimated. There are many methods for fractional parameter estimation. In this research, the estimation methods were divided into indirect methods, where the Hurst parameter is estimated fir
... Show MoreAs harmony with modernized environmental developments which were appeared within economical , banking areas with what accompanied of chances or challenges , the matter is required to face those modernizations , adaptation with them , as considering them strength points not weak points , and these developments banking marketing as it should be on the Iraqi public banks and private and hybrid to take advantage of this process to increase excellence and the expansion of the banking business opportunities, , enlarge in the banking businesses especially the banking transaction are distinguished by serious competition & strong between banks , and the final result is to serve Iraqi banking system & customers that the national economy ta
... Show MoreL1 adaptive controller has proven to provide fast adaptation with guaranteed transients in a large variety of systems. It is commonly used for controlling systems with uncertain time-varying unknown parameters. The effectiveness of L1 adaptive controller for position control of single axis has been examined and compared with Model Reference Adaptive Controller (MRAC). The Linear servo motor is one of the main constituting elements of the x-y table which is mostly used in automation application. It is characterized by time-varying friction and disturbance.
The tracking and steady state performances of both controllers have been assessed fo
... Show MoreScheduling Timetables for courses in the big departments in the universities is a very hard problem and is often be solved by many previous works although results are partially optimal. This work implements the principle of an evolutionary algorithm by using genetic theories to solve the timetabling problem to get a random and full optimal timetable with the ability to generate a multi-solution timetable for each stage in the collage. The major idea is to generate course timetables automatically while discovering the area of constraints to get an optimal and flexible schedule with no redundancy through the change of a viable course timetable. The main contribution in this work is indicated by increasing the flexibility of generating opti
... Show MoreThe Internet of Things (IoT) is an information network that connects gadgets and sensors to allow new autonomous tasks. The Industrial Internet of Things (IIoT) refers to the integration of IoT with industrial applications. Some vital infrastructures, such as water delivery networks, use IIoT. The scattered topology of IIoT and resource limits of edge computing provide new difficulties to traditional data storage, transport, and security protection with the rapid expansion of the IIoT. In this paper, a recovery mechanism to recover the edge network failure is proposed by considering repair cost and computational demands. The NP-hard problem was divided into interdependent major and minor problems that could be solved in polynomial t
... Show MoreOne of the diseases on a global scale that causes the main reasons of death is lung cancer. It is considered one of the most lethal diseases in life. Early detection and diagnosis are essential for lung cancer and will provide effective therapy and achieve better outcomes for patients; in recent years, algorithms of Deep Learning have demonstrated crucial promise for their use in medical imaging analysis, especially in lung cancer identification. This paper includes a comparison between a number of different Deep Learning techniques-based models using Computed Tomograph image datasets with traditional Convolution Neural Networks and SequeezeNet models using X-ray data for the automated diagnosis of lung cancer. Although the simple details p
... Show More