There is a great deal of systems dealing with image processing that are being used and developed on a daily basis. Those systems need the deployment of some basic operations such as detecting the Regions of Interest and matching those regions, in addition to the description of their properties. Those operations play a significant role in decision making which is necessary for the next operations depending on the assigned task. In order to accomplish those tasks, various algorithms have been introduced throughout years. One of the most popular algorithms is the Scale Invariant Feature Transform (SIFT). The efficiency of this algorithm is its performance in the process of detection and property description, and that is due to the fact that it operates on a big number of key-points, the only drawback it has is that it is rather time consuming. In the suggested approach, the system deploys SIFT to perform its basic tasks of matching and description is focused on minimizing the number of key-points which is performed via applying Fast Approximate Nearest Neighbor algorithm, which will reduce the redundancy of matching leading to speeding up the process. The proposed application has been evaluated in terms of two criteria which are time and accuracy, and has accomplished a percentage of accuracy of up to 100%, in addition to speeding up the processes of matching and description.
This paper is focusing on reducing the time for text processing operations by taking the advantage of enumerating each string using the multi hashing methodology. Text analysis is an important subject for any system that deals with strings (sequences of characters from an alphabet) and text processing (e.g., word-processor, text editor and other text manipulation systems). Many problems have been arisen when dealing with string operations which consist of an unfixed number of characters (e.g., the execution time); this due to the overhead embedded-operations (like, symbols matching and conversion operations). The execution time largely depends on the string characteristics; especially its length (i.e., the number of characters consisting
... Show MoreAbstract
The current research aims to construct a scale for the nine types of students’ personality according to Rob Fitzel model. To do this, (162) items were formed that present the nine types of personality with (18) items for each type. To test the validity of the scale, a sample of (584) students of Al-Mustansrya University were chosen. The data of their responses was analyzed by using factor analysis. The findings explored (9) factors as one factor for each type of personality with (12) items for each one. Then, the reliability of the scale was found by using the test-retest method and Alfa Cronbach method.
RNA Sequencing (RNA-Seq) is the sequencing and analysis of transcriptomes. The main purpose of RNA-Seq analysis is to find out the presence and quantity of RNA in an experimental sample under a specific condition. Essentially, RNA raw sequence data was massive. It can be as big as hundreds of Gigabytes (GB). This massive data always makes the processing time become longer and take several days. A multicore processor can speed up a program by separating the tasks and running the tasks’ errands concurrently. Hence, a multicore processor will be a suitable choice to overcome this problem. Therefore, this study aims to use an Intel multicore processor to improve the RNA-Seq speed and analyze RNA-Seq analysis's performance with a multiproce
... Show MoreGray-Scale Image Brightness/Contrast Enhancement with Multi-Model
Histogram linear Contrast Stretching (MMHLCS) method
In this work, an analytical approximation solution is presented, as well as a comparison of the Variational Iteration Adomian Decomposition Method (VIADM) and the Modified Sumudu Transform Adomian Decomposition Method (M STADM), both of which are capable of solving nonlinear partial differential equations (NPDEs) such as nonhomogeneous Kertewege-de Vries (kdv) problems and the nonlinear Klein-Gordon. The results demonstrate the solution’s dependability and excellent accuracy.
The goal beyond this Research is to review methods that used to estimate Logistic distribution parameters. An exact estimators method which is the Moment method, compared with other approximate estimators obtained essentially from White approach such as: OLS, Ridge, and Adjusted Ridge as a suggested one to be applied with this distribution. The Results of all those methods are based on Simulation experiment, with different models and variety of sample sizes. The comparison had been made with respect to two criteria: Mean Square Error (MSE) and Mean Absolute Percentage Error (MAPE).
In this paper, author’s study sub diffusion bio heat transfer model and developed explicit finite difference scheme for time fractional sub diffusion bio heat transfer equation by using caputo fabrizio fractional derivative. Also discussed conditional stability and convergence of developed scheme. Furthermore numerical solution of time fractional sub diffusion bio heat transfer equation is obtained and it is represented graphically by Python.
The effective insulation design of the stress grading (SG) system in form-wound stator coils is essential for preventing partial discharges and excessive heat generation under pulse-width modulation excitation. This paper proposes a method to find the optimal insulation design of the SG system aimed at reducing the dielectric and thermal stresses in the machine coil. The non-uniform transmission line model is used to predict the voltage propagation along the overhang, SG, and slot regions considering the variation in the physical properties of the insulation layers. The machine coil parameters for different insulation materials are calculated by using the finite element method. Two optimization algorithms, fmincon and particle swarm optimiz
... Show MoreFeature selection algorithms play a big role in machine learning applications. There are several feature selection strategies based on metaheuristic algorithms. In this paper a feature selection strategy based on Modified Artificial Immune System (MAIS) has been proposed. The proposed algorithm exploits the advantages of Artificial Immune System AIS to increase the performance and randomization of features. The experimental results based on NSL-KDD dataset, have showed increasing in performance of accuracy compared with other feature selection algorithms (best first search, correlation and information gain).