This paper describes the synthesis of ?- Fe2O3 nanoparticles by sol-gel route using carboxylic acid(2-hydroxy benzoic acid) as gelatin media and its photo activity for degradation of cibacron red dye . Hematite samples are synthesized at different temperatures: 400, 500, 600, 700, 800 and 900 ?C at 700 ?C the ?-Fe2O3 nanoparticles are formed with particle size 71.93 nm. The nanoparticles are characterized by XRD , SEM, AFM and FTIR . The 0.046 g /l of the catalyst sample shows high photo activity at 3x10-5M dye concentration in acidic medium at pH 3.
Enhanced Thematic Mapper Plus (ETM+) onboard the Landsat-7 remotely sensor satellite was launched on 15 April 1999. On May 31, 2003, image acquisition via the ETM+ was greatly impacted by the failure of the system’s Scan Line Corrector (SLC). Consequently, the ETM+ has lost approximately 22% of the data due to the increased scan gap. In this work, several gap-filling methods will be proposed to restore the ETM+ image malfunctions. Some of the proposed methods will be carried by estimating the missed pixel’s values from the same image pixel’s neighborhood, while others will utilize the pixel values extracted from different temporal scene acquired in different time. Mean average filter, median filter, midpoint filter, and several int
... Show MoreIn this paper, a method based on modified adomian decomposition method for solving Seventh order integro-differential equations (MADM). The distinctive feature of the method is that it can be used to find the analytic solution without transformation of boundary value problems. To test the efficiency of the method presented two examples are solved by proposed method.
The aim of this paper is to propose a reliable iterative method for resolving many types of Volterra - Fredholm Integro - Differential Equations of the second kind with initial conditions. The series solutions of the problems under consideration are obtained by means of the iterative method. Four various problems are resolved with high accuracy to make evident the enforcement of the iterative method on such type of integro differential equations. Results were compared with the exact solution which exhibits that this technique was compatible with the right solutions, simple, effective and easy for solving such problems. To evaluate the results in an iterative process the MATLAB is used as a math program for the calculations.
This paper demonstrates a new technique based on a combined form of the new transform method with homotopy perturbation method to find the suitable accurate solution of autonomous Equations with initial condition. This technique is called the transform homotopy perturbation method (THPM). It can be used to solve the problems without resorting to the frequency domain.The implementation of the suggested method demonstrates the usefulness in finding exact solution for linear and nonlinear problems. The practical results show the efficiency and reliability of technique and easier implemented than HPM in finding exact solutions.Finally, all algorithms in this paper implemented in MATLAB version 7.12.
In this research article, an Iterative Decomposition Method is applied to approximate linear and non-linear fractional delay differential equation. The method was used to express the solution of a Fractional delay differential equation in the form of a convergent series of infinite terms which can be effortlessly computable.
The method requires neither discretization nor linearization. Solutions obtained for some test problems using the proposed method were compared with those obtained from some methods and the exact solutions. The outcomes showed the proposed approach is more efficient and correct.
In this paper, the survival function has been estimated for the patients with lung cancer using different parametric estimation methods depending on sample for completing real data which explain the period of survival for patients who were ill with the lung cancer based on the diagnosis of disease or the entire of patients in a hospital for a time of two years (starting with 2012 to the end of 2013). Comparisons between the mentioned estimation methods has been performed using statistical indicator mean squares error, concluding that the estimation of the survival function for the lung cancer by using pre-test singles stage shrinkage estimator method was the best . <
... Show MoreIn this thesis, we introduced the simply* compact spaces which are defined over simply* open set, and study relation between the simply* separation axioms and the compactness were studied and study a new types of functions known as αS^(M* )- irresolte , αS^(M* )- continuous and R S^(M* )- continuous, which are defined between two topological spaces. On the other hand we use the class of soft simply open set to define a new types of separation axioms in soft topological spaces and we introduce the concept of soft simply compactness and study it. We explain and discuss some new concepts in soft topological spaces such as soft simply separated, soft simply disjoint, soft simply division, soft simply limit point and we define soft simply c
... Show MoreThe importance of efficient vehicle detection (VD) is increased with the expansion of road networks and the number of vehicles in the Intelligent Transportation Systems (ITS). This paper proposes a system for detecting vehicles at different weather conditions such as sunny, rainy, cloudy and foggy days. The first step to the proposed system implementation is to determine whether the video’s weather condition is normal or abnormal. The Random Forest (RF) weather condition classification was performed in the video while the features were extracted for the first two frames by using the Gray Level Co-occurrence Matrix (GLCM). In this system, the background subtraction was applied by the mixture of Gaussian 2 (MOG 2) then applying a number
... Show MoreThis paper applies the Modified Adomian Decomposition Method (MADM) for solving Integro-Differential Inequality, this method is one of effective to construct analytic approximate solutions for linear and nonlinear integro-differential inequalities without solving many integrals and transformed or discretization. Several examples are presented, the analytic results show that this method is a promising and powerful for solving these problems.
The aim of this paper is to study the nonlinear delay second order eigenvalue problems which consists of delay ordinary differential equations, in fact one of the expansion methods that is called the least square method which will be developed to solve this kind of problems.