IR, MIR, UV – Visible spectra have been studied for Cobalt chloride molecule (CoCl2. 6H2O) compound, In wide range spectra (40000 – 410) cm-1 specially MIR range. Assignment were achieved for the fundamental vibrational bands of (CoCl2 . 6H2O ) to symmetry stretching ?1 (?^+) Anti – symmetry stretching ?3(?^+), these bands are non-degenerate , and the bending band is ?2(?) is doubly degenerate thought they have activity in IR and Raman , which explain the weakness in symmetry of this molecule, the fundamental bands for the molecule are centered at the following wave numbers (615, 685, 795, 1115, 1340, 1375, 1616.35, 2091, 2386, 2410, 3364) cm-1 which are corresponding to wave lengths (16260, 14598, 12578, 8968, 7462, 7272, 6186, 4782, 4191, 4149, 2972 ) nm The UV and visible spectra of the shows bands centered at (205.7) nm , (48614) cm-1 due to the electronic transition ( n ?^*) , other band centered at (512) nm, (19531) cm-1 due to (n ?^*) electronic transition .
This paper is summarized with one of the applications of adsorption behavior; A UV-Vis method has been applied to survey the isotherm of adsorption. Results for experimental showed the applicability of Langmuir equation. The effect of temperature on the adsorption of cobalt (II) Complex by bentonite surface was studied. The results shown that the amount of adsorption was formed to increase, such as the temperature increase (Endothermic process). Cobalt (II) Complex has adsorption studies by bentonite surface at different pH values (1.6-10); these studies displayed an increase in adsorption with increasing pH. ΔG, ΔH, and ΔS thermodynamic functions of the cobalt (II) Complex for their adsorption have been calculated.
Furfural is one of the one of pollutants in refinery industrial wastewaters. In this study advanced oxidation process using UV/H2O2 was investigated for furfural degradation in synthetic wastewater. The results from the experimental work showed that the degradation of furfural decreases as its concentration increases, reaching 100% at 50mg/l furfural concentration and increasing the concentration of H2O2 from 250 to 500 mg/l increased furfural removal from 40 to 60%.The degradation of furfural reached 100% after 90 min exposure time using two UV lamps, where it reached 60% using one lamp after 240 min exposure time. The rate of furfural degradation k increased at the pH and initial concentratio
... Show MoreAbstract: To study the effect of nickel chloride on bone composition of mice, a number of biophysical and biochemical parameters have been made use. The animals were divided into control and experimental and further subdivided into three groups I, II and III according to the dose of nickel chloride (NiCl2) administered to them i.e. 5.8, 12.8 and 28.2 mg/kg body weight, respectively. Femur bones were obtained by sacrificing the animals three weeks after weaning them once a week. The percentage loss between the wet weight and dry weight of femur in control animals was found to be 32.5+1.5 .In the three experimental groups I,II and III, the percentage loss was 30.4+1.4, 35.3+2.3 and 38.9+2.2 respectively. The percentage loss between the wet we
... Show MoreThe dielectric constant of most polymers is very low; the addition of TiO2 particles into the polymers provides an attractive and promising way to reach a high dielectric constant. Polymer-based materials with a high dielectric constant show great potential for energy storage applications. Four samples were prepared, one of them was polyurethane (PU) and the other were PU with different weight percent (wt %) of TiO2 (0.1, 0.2, 0.3) powder AFM test was used to distinguish the nanoparticles. The result shows that the most shape of these nanoparticles are spherical and the roughness average is 0.798 nm. The dielectric properties were measured for all samples before and after the exposure to the UV radiation. The result illustrates that the
... Show MoreNanostructured photodetectors have garnered great attention due to their enriched electronic and optical properties. In this work, we aim to fabricate a high-performance CeO2/Si photodetector by growing a CeO2 nanostructure film on a silicon substrate using the pulsed laser deposition (PLD) technique at different laser energy densities. The impact of laser energy density and the number of pulses on the morphological, optical, and electrical properties was studied. Field emission scanning electron microscopy (FESEM) results show that the CeO2 film has a spherical grain morphology with an average grain size ranging from 33 to 54 nm, depending on the laser energy density. The film deposited at various numbers of laser pulses also has spherical
... Show MoreSeeds of the two rice genotypes namely Amber 33 (A33) and Amber Baghdad (AB) were divided into two groups; the first was presoaked in different concentrations of ethyl methane sulphonate (EMS) as chemical mutagen for different duration times (3, 6 and 12) hrs, and the other was exposed to different exposure times of ultra violate (UV-B) radiation (280-320 nm) as physical mutagen for different times (20, 40 and 60) min at room temperature. Treated and non-treated seeds were transferred into the callus induction medium containing 2.5 mg/L 2,4- dichlorophenoxy acetic acid (2,4-D) and 0.5 mg/L benzyl adenine (BA) under aseptic conditions. Calli were divided into two groups the first was treated with several EMS concentrations (0.0, 0.50. 1.0, 1
... Show MoreIn this work, composite materials were prepared by mixing different concentrations of ferrites with polyacrylonitrile (PAN) polymer. Using the electrospinning technique, these composites were deposited on a p-type silicon wafer. The prepared samples demonstrated nanofibers in both pure PAN polymers and their composites with ferrite. Prior to examining the humidity sensing effectiveness with a percentage of relative humidity at a frequency of 10 kHz, based on ambient temperature and a relative humidity range of 50–100%, the composite nanofibers demonstrated stronger humidity sensing compared to the pure PAN nanofibers, which demonstrated a powerful resistance response. More precisely, the PAN@ferrite nanocomposite showed a broad adsorption
... Show MoreObjective: To assess the functional outcome, time to union, shoulder pain, blood loss, operative time, iatrogenic radial nerve injury, hospitalization, and infection. Methodology: It is a prospective randomized study on 30 patients with mid-shaft humerus fracture according to AO classification (1.2A1, 2, 3 and 1,2B) with functioning radial nerve. They were randomly dividing into two groups. Group A were treated by a closed antegrade interlocking nail, and group B treated by open reduction and locked compression plate fixation. The follow-up was up to 6 months, including time to union, shoulder pain, intraoperative blood loss, operative time and iatrogenic radial nerve injury. Functional outcome was assessed by quick DASH score. Resu
... Show More