In this paper, a new approach was suggested to the method of Gauss Seidel through the controlling of equations installation before the beginning of the method in the traditional way. New structure of equations occur after the diagnosis of the variable that causes the fluctuation and the slow extract of the results, then eradicating this variable. This procedure leads to a higher accuracy and less number of steps than the old method. By using the this proposed method, there will be a possibility of solving many of divergent values equations which cannot be solved by the old style.
This research is considered one of the important researches in Maysan Governorate, as it focuses on the construction of helicopter airport project in the oil fields of the Maysan Oil Company, where the oil general companies in Maysan Governorate suffer from the cost of transporting the foreign engineering experts and the governing equipment of sustaining oil industry from Iraq's international airports to oil fields and vice versa. Private international transport companies transport foreign engineering from the oil fields to Iraqi airports and vice versa, and other international security companies take action to provide protection for foreign engineering experts during transportation. Hence, this process is very costly.
&nbs
... Show MoreObjectives: The study aims to investigate the efficiency of physiotherapy methods to improve the
degree of the clinical recovery of the peripheral facial palsy.
Methodology: This study is carried out at the Rehabilitation Center-Baghdad from November 2009 till
March 2010. This study includes (40) patient, their ages are from (13) to (55) years old; (24) male and
(16) female with unilateral facial palsy of undetermined cause. House-Brackmann facial recovery
scores have been used before and after the physiotherapy treatment.
Results: The results show that the physiotherapy sessions obtained the best effect of the electrical
stimulation, exercises and massage in the treatment of facial palsy. Highly respondents in femal
<p>Daftardar Gejji and Hossein Jafari have proposed a new iterative method for solving many of the linear and nonlinear equations namely (DJM). This method proved already the effectiveness in solved many of the ordinary differential equations, partial differential equations and integral equations. The main aim from this paper is to propose the Daftardar-Jafari method (DJM) to solve the Duffing equations and to find the exact solution and numerical solutions. The proposed (DJM) is very effective and reliable, and the solution is obtained in the series form with easily computed components. The software used for the calculations in this study was MATHEMATICA<sup>®</sup> 9.0.</p>
The wavelets have many applications in engineering and the sciences, especially mathematics. Recently, in 2021, the wavelet Boubaker (WB) polynomials were used for the first time to study their properties and applications in detail. They were also utilized for solving the Lane-Emden equation. The aim of this paper is to show the truncated Wavelet Boubaker polynomials for solving variation problems. In this research, the direct method using wavelets Boubaker was presented for solving variational problems. The method reduces the problem into a set of linear algebraic equations. The fundamental idea of this method for solving variation problems is to convert the problem of a function into one that involves a finite number of variables. Diff
... Show Moreتعد المحاسبة بشكل عام علماً لكنها ليست من العلوم الصرفة وإنما من العلوم الإجتماعية مما يتطلب للتعامل مع المواضيع المحاسبية الأخذ بنظر الاعتبار الأشخاص المعنيين بالموضوع سواء كانوا المعدين للمخرجات المحاسبية أي المحاسبين، أو الاطراف ذوي المصالح المعنيين والمستفيدين من هذه المخرجات أي المستخدمين، ويعد المحاسب جزءاً من العملية الاجرائية نفسها وبهذا يكون دوره مزدوجاً يجمع بين كونه القائم بالبحث والقي
... Show More
In this work, the modified Lyapunov-Schmidt reduction is used to find a nonlinear Ritz approximation of Fredholm functional defined by the nonhomogeneous Camassa-Holm equation and Benjamin-Bona-Mahony. We introduced the modified Lyapunov-Schmidt reduction for nonhomogeneous problems when the dimension of the null space is equal to two. The nonlinear Ritz approximation for the nonhomogeneous Camassa-Holm equation has been found as a function of codimension twenty-four.
In the present article, we implement the new iterative method proposed by Daftardar-Gejji and Jafari (NIM) [V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl. 316 (2006) 753-763] to solve two problems; the first one is the problem of spread of a non-fatal disease in a population which is assumed to have constant size over the period of the epidemic, and the other one is the problem of the prey and predator. The results demonstrate that the method has many merits such as being derivative-free, overcome the difficulty arising in calculating Adomian polynomials to handle the nonlinear terms in Adomian Decomposition Method (ADM), does not require to calculate Lagrange multiplier a
... Show MoreThe thin films of cadmium oxide (CdO) were deposited using the SILAR (Successive ionic layer absorption and reaction) method at various deposition cycles. CdO thin films were made on glass substrates at a temperature of 95°C, using a cadmium acetate source material and an ammonium hydroxide solution. One of the main criteria that impact the quality of thin films is the number of deposition cycles. The size of the crystals decreases with the increase in the number of cycles from 33.7 nm at the immersion cycle 10 to 22.7 nm at the immersion cycle 20, as shown by the X-ray diffraction results. The optical band gap energy of the films reduces as the number of deposition cycles increases, while the transmittance of the Cadmium oxide film i
... Show More