Preferred Language
Articles
/
bsj-2324
Estimating Parametersof Gumbel Distribution For Maximum Values By using Simulation
...Show More Authors

In this research estimated the parameters of Gumbel distribution Type 1 for Maximum values through the use of two estimation methods:- Moments (MoM) and Modification Moments(MM) Method. the Simulation used for comparison between each of the estimation methods to reach the best method to estimate the parameters where the simulation was to generate random data follow Gumbel distributiondepending on three models of the real values of the parameters for different sample sizes with samples of replicate (R=500).The results of the assessment were put in tables prepared for the purpose of comparison, which made depending on the mean squares error (MSE).

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
Experimental Evaluation of the Performance of One-Axis Daily Tracking and Fixed PV Module in Baghdad, Iraq
...Show More Authors

An attempt was made to evaluate the PV performance of one-axis daily tracking and fixed system for Baghdad, Iraq. Two experimental simulations were conducted on a PV module for that purpose. Measurements included incident solar radiation, load voltage and load current. The first experiment was carried out for six months of winter half of year to simulate the one-axis daily tracking. The azimuth angle was due south while the tilt angle was being set to optimum according to each day of simulation. The second experiment was done at one day to simulate the PV module of fixed angles. It is found that there is a significant power gain of 29.6% for the tracking system in respect to the fixed one. The one-axis daily tracking was much more effect

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Dec 30 2020
Journal Name
Iraqi Journal Of Science
A Comparison of Different Estimation Methods to Handle Missing Data in Explanatory Variables
...Show More Authors

Missing data is one of the problems that may occur in regression models. This problem is usually handled by deletion mechanism available in statistical software. This method reduces statistical inference values because deletion affects sample size. In this paper, Expectation Maximization algorithm (EM), Multicycle-Expectation-Conditional Maximization algorithm (MC-ECM), Expectation-Conditional Maximization Either (ECME), and Recurrent Neural Networks (RNN) are used to estimate multiple regression models when explanatory variables have some missing values. Experimental dataset were generated using Visual Basic programming language with missing values of explanatory variables according to a missing mechanism at random general pattern and s

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Science
Mean Latin Hypercube Runge-Kutta Method to Solve the Influenza Model
...Show More Authors

     In this study, we propose a suitable solution for a non-linear system of ordinary differential equations (ODE) of the first order with the initial value problems (IVP) that contains multi variables and multi-parameters with missing real data. To solve the mentioned system, a new modified numerical simulation method is created for the first time which is called Mean Latin Hypercube Runge-Kutta (MLHRK). This method can be obtained by combining the Runge-Kutta (RK) method with the statistical simulation procedure which is the Latin Hypercube Sampling (LHS) method. The present work is applied to the influenza epidemic model in Australia in 1919  for a previous study. The comparison between the numerical and numerical simulation res

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref