This study was conducted to test the effectiveness of Agaricus bisporus inoculums (spawn) in the ratio of (0.25, 0.5 and 1%) v/v to control Pythium aphanidermatum fungus the causal agent of damping- off disease of cucumber plant. results showed the ability of A. bisporus fungus to protect the seedlings from incidence by P. aphanidermatum . all treatments of edible fungus inoculums were significantly different from pathogen treatment after 15 day of planting and there was no significant difference found from control treatment (without pathogen) . the successful of A. bisporus was continued to protect the seedlings after 30 and 45 day after planting. The numbers of seedlings were (8, 7.25 & 7.25) respectively compared to 5.5 seedlings in control treatment (with pathogen) on the 45th. Disease severity was reached (4.5) and the disease index was (90%) in pathogen treatment that significantly different from all other treatments. At the same time the treatments of the tested ratio (0.25, 0.5, 1) % were able to reduce the ratio of disease severity and disease index by 22% compared to control treatment (with pathogen). The results showed that all treatments of edible fungus inoculums that used to control P. aphanidermatum were achieved significant increase in growth index represented by plants height which reached to (30, 31, 30.3) cm respectively, compared to control treatment (with pathogen) ( 22.3)cm. The results reflected on plants wet weight (16.92, 18.85, 16.92)g were significant increase from control treatment (with pathogen) ( 12.61)g. As well as the significant increase in plants dry weight of edible fungus inoculums were reached (1.75, 2.04, 2.16) g compared to control treatment (with pathogen) (1.2)g.
The research problem focused through the researcher's experience in the gymnastics game and the lack of use of educational models that give the student an important role in the educational process, so it became necessary to identify the type of prevailing style for students, and the need for diversity in the use of educational models based on scientific theories, including the Daniel Document model. Based on three theories of learning, which are structural, behavioral, and meaningful learning. The research aimed to identify the effect of using the Daniel model for people with two types of brain control (left and right) to learn the skill of the Cartwheel in artistic gymnastics for students of the second stage. The researcher used the experi
... Show MoreThe experiment was conducted to study the effect of leaves extract of Salvia sclarea , Rosmarinus officinalis and Thymus vulgaris with 10% and 30% concentration on germination of seeds and growth of seedlings . The effect of these extracts on infection percentage of seeds decay and surface growth of Rhizoctonia solani . The results showed that the three extracts effected significantly to reduced percentage of seeds germination, acceleration of germination , promoter indicator , infection percentage of seeds decay and surface growth of R. solani especially in 30% concentration .
Nowadays, Wheeled Mobile Robots (WMRs) have found many applications as industry, transportation, inspection, and other fields. Therefore, the trajectory tracking control of the nonholonomic wheeled mobile robots have an important problem. This work focus on the application of model-based on Fractional Order PIaDb (FOPID) controller for trajectory tracking problem. The control algorithm based on the errors in postures of mobile robot which feed to FOPID controller to generate correction signals that transport to torque for each driven wheel, and by means of dynamics model of mobile robot these torques used to compute the linear and angular speed to reach the desired pose. In this work a dynamics model of
... Show MoreThis paper presents the Extended State Observer (ESO) based repetitive control (RC) for piezoelectric actuator (PEA) based nano-positioning systems. The system stability is proved using Linear Matrix Inequalities (LMIs), which guarantees the asymptotic stability of the system. The ESObased RC used in this paper has the ability to eliminate periodic disturbances, aperiodic disturbances and model uncertainties. Moreover, ESO can be tuned using only two parameters and the model free approach of ESO-based RC, makes it an ideal solution to overcome the challenges of nano-positioning system control. Different types of periodic and aperiodic disturbances are used in simulation to demonstrate the effectiveness of the algorithm. The comparison studi
... Show MoreThe flexible joint robot manipulators provide various benefits, but also present many control challenges such as nonlinearities, strong coupling, vibration, etc. This paper proposes optimal second order integral sliding mode control (OSOISMC) for a single link flexible joint manipulator to achieve robust and smooth performance. Firstly, the integral sliding mode control is designed, which consists of a linear quadratic regulator (LQR) as a nominal control, and switching control. This control guarantees the system robustness for the entire process. Then, a nonsingularterminal sliding surface is added to give a second order integral sliding mode control (SOISMC), which reduces chartering effect and gives the finite time convergence as well. S
... Show MoreThe virtual decomposition control (VDC) is an efficient tool suitable to deal with the full-dynamics-based control problem of complex robots. However, the regressor-based adaptive control used by VDC to control every subsystem and to estimate the unknown parameters demands specific knowledge about the system physics. Therefore, in this paper, we focus on reorganizing the equation of the VDC for a serial chain manipulator using the adaptive function approximation technique (FAT) without needing specific system physics. The dynamic matrices of the dynamic equation of every subsystem (e.g. link and joint) are approximated by orthogonal functions due to the minimum approximation errors produced. The contr
Trajectory tracking and vibration suppression are essential objectives in a flexible joint manipulator control. The flexible joint manipulator is an under-actuated system, in which the number of control actions is less than the degree of freedom to be controlled. It is very challenging to control the underactuated nonlinear system with two degree of freedom. This paper presents a hierarchical sliding mode control (HSMC) for a rotary flexible joint manipulator (RFJM). Firstly, the rotary flexible joint manipulator is modeled by two subsystems. Secondly, the sliding surfaces for both subsystems are constructed. Finally, the control action is designed based on the Lyapunov function. Computer simulation results demonstrate the effectiveness of
... Show More