The main object of this paper is to study the representations of monomial groups and characters technique for representations of monomial groups. We refer to monomial groups by M-groups. Moreover we investigate the relation of monomial groups and solvable groups. Many applications have been given the symbol G e.g. group of order 297 is an M-group and solvable. For any group G, the factor group G/G? (G? is the derived subgroup of G) is an M-group in particular if G = Sn, SL(4,R).
In this paper the queuing system (M/Er/1/N) has been considered in equilibrium. The method of stages introduced by Erlang has been used. The system of equations which governs the equilibrium probabilities of various stages has been given. For general N the probability of j stages of service are left in the system, has been introduced. And the probability for the empty system has been calculated in the explicit form.
Let G be a finite group and X be a conjugacy class of order 3 in G. In this paper, we introduce a new type of graphs, namely A4-graph of G, as a simple graph denoted by A4(G,X) which has X as a vertex set. Two vertices, x and y, are adjacent if and only if x≠y and x y-1=y x-1. General properties of the A4-graph as well as the structure of A4(G,X) when G@ 3D4(2) will be studied.
The new type of paranormal operators that have been defined in this study on the Hilbert space, is paranormal operators. In this paper we introduce and discuss some properties of this concept such as: the sum and product of two paranormal, the power of paranormal. Further, the relationships between the paranormal operators and other kinds of paranormal operators have been studied.
In this paper we study the concepts of δ-small M-projective module and δ-small M-pseudo projective Modules as a generalization of M-projective module and M-Pseudo Projective respectively and give some results.
Let m ≥ 1,n ≥ 1 be fixed integers and let R be a prime ring with char (R) ≠2 and
(m+n). Let T be a (m,n)(U,R)-Centralizer where U is a Jordan ideal of R and T(R)
⊆ Z(R) where Z(R) is the center of R ,then T is (U,R)- Centralizer.
In this paper we study the concepts of δ-small M-projective module and δ-small M-pseudo projective Modules as a generalization of M-projective module and M-Pseudo Projective respectively and give some results.
The concepts of generalized higher derivations, Jordan generalized higher derivations, and Jordan generalized triple higher derivations on Γ-ring M into ΓM-modules X are presented. We prove that every Jordan generalized higher derivation of Γ-ring M into 2-torsion free ΓM-module X, such that aαbβc=aβbαc, for all a, b, c M and α,βΓ, is Jordan generalized triple higher derivation of M into X.
The aim of our work is to develop a new type of games which are related to (D, WD, LD) compactness of topological groups. We used an infinite game that corresponds to our work. Also, we used an alternating game in which the response of the second player depends on the choice of the first one. Many results of winning and losing strategies have been studied, consistent with the nature of the topological groups. As well as, we presented some topological groups, which fail to have winning strategies and we give some illustrated examples. Finally, the effect of functions on the aforementioned compactness strategies was studied.