This paper deals with the F-compact operator defined on probabilistic Hilbert space and gives some of its main properties.
The aim of this work is to give the new types for diskcyclic criterion. We also introduced the case if there is an equivalent relation between a diskcyclic operator and T that satisfies the diskcyclic criterion. Moreover, we discussed the condition that makes T, which satisfies the diskcyclic criterion, a diskcyclic operator
A gamma T_ pure sub-module also the intersection property for gamma T_pure sub-modules have been studied in this action. Different descriptions and discuss some ownership, as Γ-module Z owns the TΓ_pure intersection property if and only if (J2 ΓK ∩ J^2 ΓF)=J^2 Γ(K ∩ F) for each Γ-ideal J and for all TΓ_pure K, and F in Z Q/P is TΓ_pure sub-module in Z/P, if P in Q.
The main goal of this paper is to introduce and study a new concept named d*-supplemented which can be considered as a generalization of W- supplemented modules and d-hollow module. Also, we introduce a d*-supplement submodule. Many relationships of d*-supplemented modules are studied. Especially, we give characterizations of d*-supplemented modules and relationship between this kind of modules and other kind modules for example every d-hollow (d-local) module is d*-supplemented and by an example we show that the converse is not true.
Throughout this work we introduce the notion of Annihilator-closed submodules, and we give some basic properties of this concept. We also introduce a generalization for the Extending modules, namely Annihilator-extending modules. Some fundamental properties are presented as well as we discuss the relation between this concept and some other related concepts.
Let R be a commutative ring with identity, and let M be a unitary R-module. We introduce a concept of almost bounded submodules as follows: A submodule N of an R-module M is called an almost bounded submodule if there exists xÃŽM, xÃN such that annR(N)=annR(x).
In this paper, some properties of almost bounded submodules are given. Also, various basic results about almost bounded submodules are considered.
Moreover, some relations between almost bounded submodules and other types of modules are considered.
Most of the Weibull models studied in the literature were appropriate for modelling a continuous random variable which assumes the variable takes on real values over the interval [0,∞]. One of the new studies in statistics is when the variables take on discrete values. The idea was first introduced by Nakagawa and Osaki, as they introduced discrete Weibull distribution with two shape parameters q and β where 0 < q < 1 and b > 0. Weibull models for modelling discrete random variables assume only non-negative integer values. Such models are useful for modelling for example; the number of cycles to failure when components are subjected to cyclical loading. Discrete Weibull models can be obta
... Show Moreالمتغير العشوائي X له توزيع أسي اذا كان له دالة احتمالية الكثافة بالشكل:
عندما ، هذه هي الحالة الخاصة لتوزيع كاما.
غالباً جداً ولسبب معقول تأخذ . الحالة الخاصة لـ (1) التي نحصل عليها تسمى بالتوزيع الاسي لمعلمة واحدة.
اذا كانت ، ، التوزيع في هذه الحالة يسمى التوزيع الاسي القياسي
اما بالنسب
... Show MoreLet R be a commutative ring with unity and let M be a left R-module. We define a proper submodule N of M to be a weakly prime if whenever r  R, x  M, 0  r x  N implies x  N or r  (N:M). In fact this concept is a generalization of the concept weakly prime ideal, where a proper ideal P of R is called a weakly prime, if for all a, b  R, 0  a b  P implies a  P or b  P. Various properties of weakly prime submodules are considered.