In this work semi–empirical method (PM3) calculations are carried out by (MOPAC) computational packages have been employed to calculate the molecular orbital's energies for some organic pollutants. The long– chain quaternary ammonium cations called Iraqi Clays (Bentonite – modified) are used to remove these organic pollutants from water, by adding a small cationic surfactant so as to result in floes which are agglomerates of organobentonite to remove organic pollutants. This calculation which suggests the best surface active material, can be used to modify the adsorption efficiency of aniline , phenol, phenol deriviatives, Tri methyl glycine, ester and pecticides , on Iraqi Clay (bentonite) by comparing the theoretical results with experimental results achived in previous experimental studies between some organic pollutants and modified bentonite by (1- Hexadecyl pyridinium bromide) (HDPYBr). The theoretical calculation is made by using three surface active materials [1- (Hexadecyl pyridinium bromide) (HDPYBr), (1,12- Dipyridiniododecane dibromide) (DPYDDBr2) and Hexadecyl trimethyl ammonium bromide (HDTMA)]. Using (HDTMA) leads to the best adsorption efficiency for most pollutants involved in this study. The enthalpy of formations, dipole and energy of molecular orbitale HOMO and LUMO energies levels are calculated for all pollutants and the three surface active materials.
To enhance interfacial bonding between carbon fibers and epoxy matrix, the carbon fibers have been modified with multiwall carbon nanotubes (MWCNTs) using the dip- coating technique. FT-IR spectrum of the MWCNTs shows a peak at 1640 cm−1 corresponding to the stretching mode of the C=C double bond which forms the framework of the carbon nanotube sidewall. The broad peak at 3430 cm−1 is due to O–H stretching vibration of hydroxyl groups and the peak at 1712 cm−1 corresponds to the carboxylic (C=O) group attached to the carbon fiber. The peaks at 2927 cm−1 and 2862 cm−1 ar
In this research, we studied the effect of concentration carriers on the efficiency of the N749-TiO2 heterogeneous solar cell based on quantum electron transfer theory using a donor-acceptor scenario. The photoelectric properties of the N749-TiO2 interfaces in dye sensitized solar cells DSSCs are calculated using the J-V curves. For the 〖(CH_3)〗_3 COH solvent, the N749-TiO2 heterogeneous solar cell shows that the concentration carrier together with the strength coupling are the main factors affecting the current density, fill factor and efficiency. The current density and current increase as the concentration increases and the strength coupling increases as the N749-TiO2 heterogeneous in solar cell. However, the efficiency is more sens
... Show MoreIn this work the strain energy of tetrahedrane and its nitrogen substituted molecules were calculated by isodesmic reaction method according to DFT quantum chemical fashion, the used basis set was 6-31G/B3-LYP, in addition all structures were optimized by RM1 semi-empirical method. From the obtained data we estimate an empirical equation connect between strain energy of the molecule with charge functions represented by dipole moment of the molecule plus accumulated charge density involved within the tetrahedron frame plus the number of nitrogen atoms. The results indicate the charge spreading factors by polarization and processes are the most important factors in decreasing the strain energy.
A polycrystalline PbxS1-x alloys with various Pb content ( 0.54 and 0.55) has been prepared successfully. The structure and composition of alloys are determined by X-ray diffraction (XRD), atomic absorption spectroscopy (AAS) and X-ray fluorescence (XRF) respectively. The X-ray diffraction results shows that the structure is polycrystalline with cubic structure, and there are strong peaks at the direction (200) and (111), the grain size varies between 20 and 82 nm. From AAS and XRF result, the concentrations of Pb content for these alloys were determined. The results show high accuracy and very close to the theoretical values. A photoconductive detector as a bulk has been fabricated by taking pieces of prepared alloys and polished chemic
... Show MoreCerebral palsy "is one of the diseases that afflict children, and it is a term given to the condition of a child who is exposed to a normal brain injury by accident due to its inability to grow or damage to the cells of the areas responsible for movement and knowledge of strength and balance during the stage of normal development." (116: 1999: 10) Cerebral palsy causes disruption in movement and posture due to damage to brain cells in areas that control and coordinate muscle tone, reflexes, strength, and movement. The degree and location of brain damage varies greatly between people with paralysis, as well as the severity of disability and symptoms, as they fall into severe to very simple, and cerebral palsy is one of the diseases that caus
... Show MoreCdS films were prepared by thermal evaporation technique at thickness 1 µm on glass substrates and these films were doped with indium (3%) by thermal diffusion method. The electrical properties of these have been investigated in the range of diffusion temperature (473-623 K)> Activation energy is increased with diffusion temperature unless at 623 K activation energy had been decreased. Hall effect results have shown that all the films n-type except at 573 and 623 K and with increase diffusion temperature both of concentration and mobility carriers were increased.
Sb2S3 thin films have been prepared by chemical bath deposition on a glas sub Absorbance and transmittance spectra were recorded in the wavelength range (30-900) nm. The effects of thickness on absorption coefficient, reflectance, refractive index, extinction coefficient, real and imaginary parts of dielectric constant were estimated. It was found that the reflectivity, absorption coefficient , extinction coefficient, real part of dielectric constant and refractive index, all these parameters decrease as the thickness increased, while the imaginary part of the dielectric constant increase as the thickness incre
... Show MoreBasil (Ocimum basilicum L.), a leafy plant used for fresh food, medicinal purposes, and aromatic purposes (including the extraction of volatile essential oil and active compounds), was the subject of a worker experiment at the College of Education for Pure Sciences Ibn Al-Haitham / University of Baghdad during the 2023 growing season. The experiment aimed to determine the effects of spraying the basil plant’s vegetative system with aqueous extracts of watercress and parsley on the plant’s growth characteristics and the production of active compounds. The experiment included two factors, the first factor, the aqueous extract of the watercress plant in three concentrations (0, 5, 10
This study examined the effect of essential oils extracted from peel of Citrus paradisi and Citrus sinensis on two species of fungi: Penicillium oxalicum and Fusarium oxysporum as well as effect of two fungicides: Carbendazim and Thiophanatemethyl against above fungi. Results showed that the essential oil of Citrus paradisi inhibited the radial growth of Penicillium oxalicum and Fusarium oxysporum at concentration 4%. Nevertheless, the essential oil of Citrus sinensis inhibited the radial growth at concentration 5 and 4%, respectively. Furthermore, the two studied fungicides inhibited radial growth of these fungi too. Therefore, there are a positive relationship between the evaluating of concentration and the percentage of inhibiting of rad
... Show More