New metal ions complexes of tridentate ligand (1-((dicyclohexylamino) methyl)-3-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrzol-4-ylimino) indolin-2-one) have been synthesized and characterized by chemical-physical analysis. The ligand acts as a tridentate for the complexation reaction with all metal ions. The new complexes, possessing the general formula [M(L)Cl]Cl where M=[Ni(II), Cu(II), Zn(II), Pd(II), Cd(II), Pt(IV) and Hg(II) ] ,show tetrahedral geometry. All complexes ,except Pd(II) complex which has a square planar geometry and Pt(IV) which show an octahedral geometry. The geometry of the prepared compounds has been proposed in another method theoretically by using one of the calculation molecular programs (Hyper chem.-6) program. Besides the comparison between the experimental results with the theoretical ones, show that the experimental results are so close to the theoretical counterpart.
A new ligand [N- (1,5- dimethyl -3- oxo- 2 – phenyl - 2 ,3 – dihydro -1H- pyrazol -4- ylcarbamothioyl) acetamide] (AAD) was synthesized by reaction of acetyl isothiocyanate with 4-aminoantipyrine, The ligand was characterized by micro elemental analysis C.H.N.S., FT-IR ,UV-Vis and 1H-13CNMR spectra, some transition metals complex of this ligand were prepared and characterized by FT-IR, UV-Vis spectra, conductivity measurements, magnetic susceptibility and atomic absorption. From the obtained results the molecular formula of all prepared complexes were [M(AAD)2(H2O)2]Cl2 (M+2 = Mn, Co, Ni, Cu, Zn, Cd and Hg),the proposed geometrical structure for all complexes were octahedral.
3-(4-hydroxyphenyl)-2-(3-(4-nitrobenzoyl) thioureido) propanoic acid (HNP) a new ligand was synthesized by reaction of Tyrosine with (4-Nitrobenzoyl isothiocyanate) by using acetone as a solvent. The prepared ligand (HNP) has been characterized by elemental analysis (CHNS), infrared (FT-IR), electronic spectral (Ultraviolet visible) and(1H,13C-Nuclear Magnetic Resonance) spectra. Some Divalent metal ion complexes of (HNP) were prepared and spectroscopic studies by Fourier transform infrared (FTIR), electronic spectral(UV-Vis), molar conductance, magnetic susceptibility and atomic absorption. The results measured showed the formula of six prepared complexes were [M (HNP)2] (M+2 = Manganese, Cobalt, Nickel, Znic, Cadmium and Mercury),from the
... Show MoreSchiff bases of Ceftizoxime sodium were synthesized in an attempt to improve the antimicrobial spectrum of Ceftizoxime. Aminothiazole ring of Ceftizoxime is linked directly through an imino group to different aromatic aldehydes reacted by nucleophilic addition using trimethylamine (TEA), as a catalyst and refluxed in methanol. The antimicrobial activity was evaluated for such Schiff bases using disc diffusion method. Molecular docking was conducted on certain penicillin-binding proteins (PBPs) and carboxypeptidases using 1- click docking software. Schiff bases of Ceftizoxime were prepared with reasonable yields and their chemical structures were confirmed by spectral analysis (FTIR, 1H-NMR) and elemental microanalysis (CHNS). The antibacter
... Show MoreThis work contain many steps starting from esterification of isophthalic acid to yield diester compound [I] which was converted to their acid hydrazide [II], then the later compound reacted with ethylacetoacetate to yield pyrazol-5-one compound [III]. Afterword added acetyl chloride to give the compound [IV], thereaction of this compound with theiosemicarbazide ledto produce a new carbothioamide compound [V], Which was reacted with ethyl chloro acetate to yield thethioxoimidazolidin compound [VI]. The condensation reaction of this compound with different substituted aldehyde give new alkene derivatives[VII]a-d. The synthesized compounds were characterized by melting points , FT-IR ,1H-NMR and Mass spectroscopy .
This work contain many steps starting from esterification of isophthalic acid to yield diester compound [I] which was converted to their acid hydrazide [II], then the later compound reacted with ethylacetoacetate to yield pyrazol-5-one compound [III]. Afterword added acetyl chloride to give the compound [IV], the reaction of this compound with theiosemicarbazide led to produce a new carbothioamide compound [V], which was reacted with ethyl chloro acetate to yield the thioxoimidazolidin compound [VI]. The condensation reactions of this compound with different substituted aldehyde give new alkene derivatives [VII] ad. The synthesized compounds were characterized by melting points, FT-IR, 1H-NMR and Mass spectroscopy.
This study is included the preparation of two tetradentate amide-thiol proligands of the general structure [H2Ln], [where; (n = (1–2)]. The ligands [H2L1] and [H2L2] have been prepared from the reaction of the cyclic thioester 2-oxo-1, 4-dithiacyclohexane (compound 1) and 3-chloro-2-oxo-1, 4 dithiacyclohexane (compound 2) with 2-aminomethanepyridine in (1:1) ratio respetively. The reaction was carried out in chloroform at room temperature and under N2 atmosphere. Structural formula of these two ligands have been reported.
With the aim of developing potential antimicrobials, a series of new 5-fluoroisatin derivatives incorporated with different secondary amines (piperidine, morpholine, pyrrolidine, dimethylamine, and diphenylamine) for monomer, and (piperazine) in case of dimer Mannich bases, separately in presence of formaldehyde to obtain Mannich bases of 5-fluoroisatin derivatives, which then each Mannich derivatives reacts with phenylhydrazine to form Schiff bases as final products. The resulting compounds were characterized by two spectroscopic analyses; (Fourier- transform infrared) FT-IR and proton nuclear magnetic resonance spectroscopy (¹H-NMR). In addition, the in vitro antibacterial and antifungal activities were tested against some human pathogen
... Show MoreFour new complexes of Pd(II), Pt(II) and Pt(IV) with DMSO solution of the ligand 8-[(4-nitrophenyl)azo]guanine (L) have been synthesized. Reaction of the ligand with Pd(II) at different pH gave two new complexes, at pH=8, a complex of the formula [Pd(L)2]Cl2.DMSO (1) was formed, while at pH=4.5,the complex[Pd(L)3]Cl2.DMSO (2) was obtained. Meanwhile, the reaction of the ligand with Pt(II) and Pt(IV) revealed new complexes with the formulas[Pt(L)2]Cl2.DMSO (3)and [Pt(L)3]Cl4.DMSO (4) at pH 7.5 and 6 respectively.
All the preparations were performed after fixing the optimum pH and concentration. The effect of time on the stability of these complexes was checked. The stoichiometry of the complexes was determined by the mole ratio and Job
The charge transfer at C23H17F8N8O2PRu, C44H30BF4N5O4Ru, C56H52CL5N5OOsP2 and C76H88F80N24O11P10Ru4 nitrosyl complexes are investigation and studies theoretically using the quantum consideration. Charge transfer behavior largely rely to the electric properties of nitrosyl complexes system whose depending on the main important parameters for the transmission rate constant such that: orientation transition energy, overlapping coupling coefficient, driving force energy, height barrier and Temperature T (K). Data results have been evaluated using a MATLAB program. Results show that rate of charge transfer increases due to increases the orientation transition energy.