Iron oxide(Fe3O4) nanoparticles of different sizes and shapes were synthesized by solve-hydrothermal reaction assisted by microwave irradiation using ferrous ammonium sulfate as a metal precursor, oleic acid as dispersing agent, ethanol as reducing agent and NaOH as precipitating agent at pH=12. The synthesized Fe3O4 nano particles were characterized by X-ray diffraction (XRD), FTIR and thermal analysis TG-DTG. Sizes and shapes of Fe3O4 nanoparticles were characterized by Scanning Electron Microscopy (SEM), and atomic force microscopy (AFM).
The research included preparation of new Schiff base (L) by two steps: preparation of precursor [bis(2-formyl-6-methoxyphenyl) succinate] (P) by reacting (3-methoxy salicyl aldehyde) with (succinoyl dichloride) as first step then react the prepared precursor (P) with (ethanethioamide) to have the new Schiff base [bis(2-((ethane thioyl imino) methyl)-6-methoxy phenyl) succinate] (L) as second step. Characterized compounds based on Mass spectra, 1 H, 13CNMR (for ligand (L)), FT-IR and UV spectrum, melting point, molar conduct, %C, %H, and %N, the percentage of the metal in complexes %M, magnetic susceptibility, while study corrosion inhibition (mild steel) in acid solution by weight loss. These measurements proved that by (Oxygen, Nitrogen, a
... Show MoreABSTRACT. A new three metal complexes of La(III), Ce(IV) and UO2(II) ions have been synthesized based on a Schiff base derived from the condensation of L-histidine and anisaldehyde. All prepared compounds were characterized by different spectroscopic techniques and Density-functional theory (DFT) calculations. The complexes were proposed to have an octahedral structure based on the investigated results. The optimized shape, numbering system, and dipole moment vector of Ligand and La, Ce, and UO2 (1:1) chelates were investigated. The Schiff base ligand and complexes exhibit moderate action against all of the bacteria tested, with P. aeruginosa, Klebsiella sp., and E. faecalis respectively being the order of inhibition.
... Show MoreStable new derivative (L) Bis[O,O-2,3;O,O-5,6(carboxylic methyliden)]L-ascorbic acid was synthesized in good yield by the reaction of L-ascorbic acid with dichloroacetic acid with ratio (1:2) in presence of potassium hydroxide. The new (L) was characterized by 1H,13C-NMR, elemental analysis (C,H) and Fourier Transform Infrared (FTIR). The complexes of the ligand (L) with metal ion, M+2= (Cu, Co, Ni, Cd and Hg) were synthesized and characterized by FTIR, UV-Visible, Molar conductance, Atomic absorption and the Molar ratio. The analysis evidence showed the binding of the metal ions with (L) through bicarboxylato group manner resulting in six-coordinated metal ion.
In this work Polyynes was synthesized by pulse laser ablation of graphite target in ethanol solution. UV-Visible Spectrophotometer, Fourier Transform Infrared Spectroscopy (FTIR) and Transmission electron microscopy (TEM) were used to study the optical absorption, chemical bonding, particle size and the morphology. UV absorption peaks coincide with the electronic transitions corresponding to linear hydrogen – capped polyyne (Cn+1H2), the absorption peaks intensity increased when the polyynes were produced at different laser energies and the formation rats of polyynes increased with the increasing of laser pulse number. The FTIR absorption peak at 2368.4 cm-1, 1640.0 cm-1 and 1276.
... Show MoreSpecific microorganisms can produce bacterial nanocellulose (BNC), with acetic acid bacteria (AAB) being the most active producer. The family Acetobacteraceae includes the obligate aerobic, motile acetic acid bacteria. The BNC has attracted a lot of interest across a wide range of industries, including pharmaceuticals, due to its flexible characteristics, properties, and advantages. The present study was conducted to purify and characterize BNC produced from AAB isolated from apple vinegar. Bacterial nanocellulose was synthesized using a natural date palm liquid medium at pH 6 at 30°C for 8–10 days. The bacterial cellulose produced was then purified using a technique involving 0.1 M sodium hydroxide. To ascertain the surface mor
... Show MoreThe present study was conducted to estimate the antimicrobial activity and the potential biological control of the killer toxin produced by
The Aim of this paper is to investigate numerically the simulation of ice melting in one and two dimension using the cell-centered finite volume method. The mathematical model is based on the heat conduction equation associated with a fixed grid, latent heat source approach. The fully implicit time scheme is selected to represent the time discretization. The ice conductivity is chosen
to be the value of the approximated conductivity at the interface between adjacent ice and water control volumes. The predicted temperature distribution, percentage melt fraction, interface location and its velocity is compared with those obtained from the exact analytical solution. A good agreement is obtained when comparing the numerical results of one
Submerged arc welding (SAW) process is an essential metal joining processes in industry. The quality of weld is a very important working aspect for the manufacturing and construction industries, the challenges are made optimal process environment. Design of experimental using Taguchi method (L9 orthogonal array (OA)) considering three SAW parameter are (welding current, arc voltage and welding speed) and three levels (300-350-400 Amp. , 32-36-40 V and 26-28-30 cm/min). The study was done on SAW process parameters on the mechanical properties of steel type comply with (ASTM A516 grade 70). Signal to Noise ratio (S/N) was computed to calculate the optimal process parameters. Percentage contributions of each parameter are validated by using an
... Show MoreThis work was conducted to study the extraction of eucalyptus oil from natural plants (Eucalyptus camaldulensis leaves) using water distillation method by Clevenger apparatus. The effects of main operating parameters were studied: time to reach equilibrium, temperature (70 to100°C), solvent to solid ratio (4:1 to 8:1 (v/w)), agitation speed (0 to 900 rpm), and particle size (0.5 to 2.5 cm) of the fresh leaves, to find the best processing conditions for achieving maximum oil yield. The results showed that the agitation speed of 900 rpm, temperature 100° C, with solvent to solid ratio 5:1 (v/w) of particle size 0.5 cm for 160 minute give the highest percentage of oil (46.25 wt.%). The extracted oil was examined by HPLC.