In this paper the proton, neutron and matter density distributions and the corresponding root mean square (rms) radii of the ground states and the elastic magnetic electron scattering form factors and the magnetic dipole moments have been calculated for exotic nucleus of potassium isotopes K (A= 42, 43, 45, 47) based on the shell model using effective W0 interaction. The single-particle wave functions of harmonic-oscillator (HO) potential are used with the oscillator parameters b. According to this interaction, the valence nucleons are asummed to move in the d3f7 model space. The elastic magnetic electron scattering of the exotic nuclei 42K (J?T= 2- 2), 43K(J?T=3/2+ 5/2), 45K (J?T= 3/2+ 7/2) and 47K (J?T= 1/2+ 9/2) investigated through Plane Wave Born Approximation (PWBA). The inclusion of core polarization effect through the effective g-factors is adequate to obtain a good agreement between the predicted and the measured magnetic dipole moments.
The two-neutron halo-nuclei (17B, 11Li, 8He) was investigated using a two-body nucleon density distribution (2BNDD) with two frequency shell model (TFSM). The structure of valence two-neutron of 17B nucleus in a pure (1d5/2) state and in a pure (1p1/2) state for 11L and 8He nuclei. For our tested nucleus, an efficient (2BNDD's) operator for point nucleon system folded with two-body correlation operator's functions was used to investigate nuclear matter density distributions, root-mean square (rms) radii, and elastic electron scattering form factors. In the nucleon-nucleon forces the correlation took account of
... Show MoreThe root-mean square-radius of proton, neutron, matter and charge radii, energy level, inelastic longitudinal form factors, reduced transition probability from the ground state to first-excited 2+ state of even-even isotopes, quadrupole moments, quadrupole deformation parameter, and the occupation numbers for some calcium isotopes for A=42,44,46,48,50 are computed using fp-model space and FPBM interaction. 40Ca nucleus is regarded as the inert core for all isotopes under this model space with valence nucleons are moving throughout the fp-shell model space involving 1f7/2, 2p3/2, 1f5/2, and 2p1/2 orbits. Model space is used to present calculations using FPBM intera
... Show MoreThe two-frequency shell model approach is used to calculate the
ground state matter density distribution and the corresponding root
mean square radii of the two-proton17Ne halo nucleus with the
assumption that the model space of 15O core nucleus differ from the
model space of extra two loosely bound valence protons. Two
different size parameters bcore and bhalo of the single particle wave
functions of the harmonic oscillator potential are used. The
calculations are carried out for different configurations of the outer
halo protons in 17Ne nucleus and the structure of this halo nucleus
shows that the dominant configuration when the two halo protons in
the 1d5/2 orbi
The inelastic C2 form factors and the charge density distribution (CDD) for 58,60,62Ni and 64,66,68Zn nuclei has been investigated by employing the Skyrme-Hartree-Fock method with (Sk35-Skzs*) parametrization. The inelastic C2 form factor is calculated by using the shape of Tassie and Bohr-Mottelson models with appropriate proton and neutron effective charges to account for the core-polarization effects contribution. The comparison of the predicted theoretical values was conducted with the available measured data for C2 and CDD form factors and showed very good agreement.
In this paper the nuclear structure of some of Si-isotopes namely, 28,32,36,40Si have been studied by calculating the static ground state properties of these isotopes such as charge, proton, neutron and mass densities together with their associated rms radii, neutron skin thicknesses, binding energies, and charge form factors. In performing these investigations, the Skyrme-Hartree-Fock method has been used with different parameterizations; SkM*, S1, S3, SkM, and SkX. The effects of these different parameterizations on the above mentioned properties of the selected isotopes have also been studied so as to specify which of these parameterizations achieves the best agreement between calculated and experimental data. It can be ded
... Show MoreAn investigation of the quadrupole deformation of Kr, Sr, Zr, and Mo isotopes has been conducted using the HFB method and SLy4 Skyrme parameterization. The primary role of occupancy of single particle state 2d5/2 in the existence of the weakly bound structure around N=50 is probed. Shell gaps are performed using a few other calculations for the doubly magic number 100Sn using different Skyrme parameterizations. We explore the interplays among neutron pairing strength and neutron density profile in two dimensions, along with the deformations of 100Sn.
The quadrupole moment of 14B exotic nucleus has been calculated using configuration mixing shell model with limiting number of orbital's in the model space. The core- polarization effects, are included through a microscopic theory which considers a particle-hole excitations from the core and the model space orbits into the higher orbits with 6ħω excitations using M3Y interaction. The simple harmonic oscillator potential is used to generate the single particle wave functions. Large basis no-core shell model with (0+2)ћω truncation is used for 14B nucleus. The effective charges for the protons and neutrons were calculated su |
The nuclear ground-state structure of some Nickel (58-66Ni) isotopes has been investigated within the framework of the mean field approach using the self-consist Hartree-Fock calculations (HF) including the effective interactions of Skyrme. The Skyrme parameterizations SKM, SKM*, SI, SIII, SKO, SKE, SLY4, SKxs15, SKxs20 and SKxs25 have been utilized with HF method to study the nuclear ground state charge, mass, neutron and proton densities with the corresponding root mean square radii, charge form factors, binding energies and neutron skin thickness. The deduced results led to specifying one set or more of Skyrme parameterizations that used to achieve the best agreement with the available experimental
... Show MoreOver the last few decades the mean field approach using selfconsistent
Haretree-Fock (HF) calculations with Skyrme effective
interactions have been found very satisfactory in reproducing
nuclear properties for both stable and unstable nuclei. They are
based on effective energy-density functional, often formulated in
terms of effective density-dependent nucleon–nucleon interactions.
In the present research, the SkM, SkM*, SI, SIII, SIV, T3, SLy4,
Skxs15, Skxs20 and Skxs25 Skyrme parameterizations have been
used within HF method to investigate some static and dynamic
nuclear ground state proprieties of 84-108Mo isotopes. In particular,
the binding energy, proton, neutron, mass and charge densities
Hartree-Fock calculations for even-even Tin isotopes using
Skyrme density dependent effective nucleon-nucleon interaction are
discussed systematically. Skyrme interaction and the general formula
for the mean energy of a spherical nucleus are described. The charge
and matter densities with their corresponding rms radii and the
nuclear skin for Sn isotopes are studied and compared with the
experimental data. The potential energy curves obtained with
inclusion of the pairing force between the like nucleons in Hartree-
Fock-Bogoliubov approach are also discussed.