Previously many properties of graphene oxide in the field of medicine, biological environment and in the field of energy have been studied. This diversity in properties is due to the possibility of modification on the composition of this Nano compound, where the Graphene oxide is capable of more modification via addition other functional groups on its surface or at the edges of the sheet. The reason for this modification possibility is that the Sp3 hybridization (tetrahedral structure) of the carbon atoms in graphene oxide, and it contains many oxygenic functional groups that are able to reac with other groups. In this research the effect of addition of some amine compounds on electrical properties of graphene oxide has been studied by the preparation of graphene oxide - amino containing compound, which could be classified under Nano carbon compounds containing nitrogen (N-doped carbon nanomaterials). These amines are used as expanders for the distance between the layers of graphene oxide (spacers), and thus prevent agglomeration of graphene oxide layers in addition to enhanced electric properties of graphene oxide. The following amines (thiocarbohydrazide(TCH),o-phenylenediamine(oPD) and poly aniline(PAni)) were used for the preparation of the corresponding amino graphene oxide (GO-TCH, GO-containing Benzoimidazol & benzoxazole, and GO-PAni), and characterized by X-RAY diffraction (XRD) ,infra red spectrum (FTIR) and atomic force microscope (AFM) , also the electrical properties of these materials were studied using inductance, capacitance, and resistance ( LCR) measurements.
Vitrifications process one of the important methods to immobilize nuclear waste. In this research nuclear waste (Strontium Oxides) with molecular weight (5%) was immobilized by vitrification methods in two types of borosilicate glass (c-type) which are glass and glass-ceramics. To investigate the physical, chemical and mechanical properties of glass and glass-ceramic after immobilize nuclear waste these samples irradiated by gamma ray radiation. Co-60 was used as gamma a irradiation with dose rate 0.38 kGy/hr for different period of time. It’s found that gamma radiation affected the glass and glass-ceramic properties. From phase analysis by the x-ray diffraction for glass-ceramic samples proved that at doses 343kGy change the cry
... Show MoreBackground: Colonization of soft denture liners by Candida albicans and other microorganisms continued to be a serious problem. The aim of this study was to evaluate the effect of incorporating silver nanoparticles into heat cured acrylic-based soft denture liner on the antifungal activity, and on water sorption, solubility, shear bond strength and color change of the soft lining material. Furthermore, evaluating the amount of silver released. Materials and methods: Silver nanoparticles were incorporated into soft denture liner in different percentages (0.05%, 0.1% and 0.2% by weight). Four hundred and twenty specimens were prepared and divided into five groups according to the test to be performed. The antifungal activity of the soft liner
... Show MoreThe importance of research lies in the school administration and that the school is the main cell of the educational system and its ultimate goal, and therefore modern education requires the presence of sophisticated leaders represented in educational administration at various levels. Administrative leaderships and the two researchers' belief that the institution’s ability and success or failure depend on a special type of leader who is highly effective and efficient, directing workers ’behavior towards creativity and achievement in order to achieve the goals of the institution in serving the educational bodies, increasing the effectiveness of leadership and developing the creative behavior of secondary school principals in
... Show MoretA novel synthesis procedure is presented for preparing triethanolamine-treated graphene nanoplatelets(TEA-GNPs) with different specific areas (SSAs). Using ultrasonication, the covalently functionalizedTEA-GNPs with different weight concentrations and SSAs were dispersed in distilled water to prepareTEA-GNPs nanofluids. A simple direct coupling of GNPs with TEA molecules is implemented to synthesizestable water-based nanofluids. The effectiveness of the functionalization procedure was validated by thecharacterization and morphology tests, i.e., FTIR, Raman spectroscopy, EDS, and TEM. Thermal conduc-tivity, dispersion stability, and rheological properties were investigated. Using UV–vis spectrometer, ahighest dispersion stability of 0.876
... Show MoreA critical milestone in nano-biotechnology is establishing reliable and ecological friendly methods for fabricating metal oxide NPs. Because of their great biodegradable, electrical, mechanical, and optical qualities, zirconia NPs (ZrO2NPs) attract much interest among all zirconia NPs (ZrO2NPs). Zirconium oxide (ZrO2) has piqued the interest of researchers throughout the world, particularly since the development of methods for the manufacture of nano-sized particles. An extensive study into the creation of nanoparticles utilizing various synthetic techniques and their potential uses has been stimulated by their high luminous efficiency, wide bandgap, and high exciton binding energy. Zirconium dioxide nano
... Show MoreSome new cyclic imides are prepared by the reaction of ampicillin drug with different cyclic anhydrides as a first step to form amic acids for ampicillin drug. The second step includes the reaction of prepared amic acids with acetic anhydride and anhydrous sodium acetate with heating in THF as a solvent to give cyclic imide compounds. These compounds are identified by melting points, FT-IR, 1H-NMR, and biological activity
Cu X Zn1-XO films with different x content have been prepared by
pulse laser deposition technique at room temperatures (RT) and
different annealing temperatures (373 and 473) K. The effect of x
content of Cu (0, 0.2, 0.4, 0.6, 0.8) wt.% on morphology and
electrical properties of CuXZn1-XO thin films have been studied.
AFM measurements showed that the average grain size values for
CuXZn1-xO thin films at RT and different annealing temperatures
(373, 473) K decreases, while the average Roughness values increase
with increasing x content. The D.C conductivity for all films
increases as the x content increase and decreases with increasing the
annealing temperatures. Hall measurements showed that there are
two