Based on analyzing the properties of Bernstein polynomials, the extended orthonormal Bernstein polynomials, defined on the interval [0, 1] for n=7 is achieved. Another method for computing operational matrices of derivative and integration D_b and R_(n+1)^B respectively is presented. Also the result of the proposed method is compared with true answers to show the convergence and advantages of the new method.
MCA has gained a reputation for being a very useful statistical method for determining the association between two or more categorical variables and their graphical description. For performance this method, we must calculate the singular vectors through (SVD). Which is an important primary tool that allows user to construct a low-dimensional space to describe the association between the variables categories. As an alternative procedure to use (SVD), we can use the (BMD) method, which involves using orthogonal polynomials to reflect the structure of ordered categorical responses. When the features of BMD are combined with SVD, the (HD) is formed. The aim of study is to use alternative method of (MCA) that is appropriate with order
... Show MoreDiscrete Krawtchouk polynomials are widely utilized in different fields for their remarkable characteristics, specifically, the localization property. Discrete orthogonal moments are utilized as a feature descriptor for images and video frames in computer vision applications. In this paper, we present a new method for computing discrete Krawtchouk polynomial coefficients swiftly and efficiently. The presented method proposes a new initial value that does not tend to be zero as the polynomial size increases. In addition, a combination of the existing recurrence relations is presented which are in the n- and x-directions. The utilized recurrence relations are developed to reduce the computational cost. The proposed method computes app
... Show MoreOrthogonal polynomials and their moments have significant role in image processing and computer vision field. One of the polynomials is discrete Hahn polynomials (DHaPs), which are used for compression, and feature extraction. However, when the moment order becomes high, they suffer from numerical instability. This paper proposes a fast approach for computing the high orders DHaPs. This work takes advantage of the multithread for the calculation of Hahn polynomials coefficients. To take advantage of the available processing capabilities, independent calculations are divided among threads. The research provides a distribution method to achieve a more balanced processing burden among the threads. The proposed methods are tested for va
... Show MoreThis article reviews the construction of organic solar cell (OSC) and characterized their optical and electrical properties, where indium tin oxide (ITO) used as a transparent electrode, “Poly (3-hexylthiophene- 2,5-diyl) P3HT / Poly (9,9-dioctylfluorene-alt-benzothiadiazole) F8BT” as an active layer and “Poly(3,4-ethylenedioxythiophene)-poly (styrene sulfonate)” PEDOT: PSS which is referred to the hole transport layer. Spin coating technique was used to prepared polymers thin film layers under ambient atmosphere to make OSC. The prepared samples were characterized after annealing process at (80 ͦ C) for (30 min) under non-isolated circumference. The results show a value of filling factor (FF) of (2.888), (0.233) and (0.28
... Show MoreKrawtchouk polynomials (KPs) and their moments are promising techniques for applications of information theory, coding theory, and signal processing. This is due to the special capabilities of KPs in feature extraction and classification processes. The main challenge in existing KPs recurrence algorithms is that of numerical errors, which occur during the computation of the coefficients in large polynomial sizes, particularly when the KP parameter (p) values deviate away from 0.5 to 0 and 1. To this end, this paper proposes a new recurrence relation in order to compute the coefficients of KPs in high orders. In particular, this paper discusses the development of a new algorithm and presents a new mathematical model for computing the
... Show MoreIn this paper, an approximate solution of nonlinear two points boundary variational problem is presented. Boubaker polynomials have been utilized to reduce these problems into quadratic programming problem. The convergence of this polynomial has been verified; also different numerical examples were given to show the applicability and validity of this method.