In this paper, we have been used the Hermite interpolation method to solve second order regular boundary value problems for singular ordinary differential equations. The suggest method applied after divided the domain into many subdomains then used Hermite interpolation on each subdomain, the solution of the equation is equal to summation of the solution in each subdomain. Finally, we gave many examples to illustrate the suggested method and its efficiency.
In this article, a new efficient approach is presented to solve a type of partial differential equations, such (2+1)-dimensional differential equations non-linear, and nonhomogeneous. The procedure of the new approach is suggested to solve important types of differential equations and get accurate analytic solutions i.e., exact solutions. The effectiveness of the suggested approach based on its properties compared with other approaches has been used to solve this type of differential equations such as the Adomain decomposition method, homotopy perturbation method, homotopy analysis method, and variation iteration method. The advantage of the present method has been illustrated by some examples.
The paper aims at initiating and exploring the concept of extended metric known as the Strong Altering JS-metric, a stronger version of the Altering JS-metric. The interrelation of Strong Altering JS-metric with the b-metric and dislocated metric has been analyzed and some examples have been provided. Certain theorems on fixed points for expansive self-mappings in the setting of complete Strong Altering JS-metric space have also been discussed.
Abstract
Although the rapid development in reverse engineering techniques, 3D laser scanners can be considered the modern technology used to digitize the 3D objects, but some troubles may be associate this process due to the environmental noises and limitation of the used scanners. So, in the present paper a data pre-processing algorithm has been proposed to obtain the necessary geometric features and mathematical representation of scanned object from its point cloud which obtained using 3D laser scanner (Matter and Form) through isolating the noised points. The proposed algorithm based on continuous calculations of chord angle between each adjacent pair of points in point cloud. A MATLAB program has been built t
... Show MoreThe applications of mobile robots in rescue scenarios, surviving to search, and exploration for outdoor navigation have received increasing attention due to their promising prospects. In this paper, a simulation of a differential wheeled mobile robot was presented, implementing a Global Positioning System (GPS) data points to specified starting points, final destination, and total error.
In this work, a simple kinematic controller for polar coordinate trajectory tracking is developed. The tracking between two points, pose to pose, was specified by using the GPS data points. After that, the geodesy (GEO) formulation was used to convert the geodesy coordinate to Euclidean or polar coordinate. The Haversine equation
... Show MoreA problem of solid waste became in the present day common global problem among all countries, whether developing or developed countries, and can say that no country in the world today is immuning from this dilemma which must find appropriate solutions. The problem has reached a stage that can not ignore or delay, but has became a daily problem occupies the minds of ecologists, economists and politicians took occupies center front in the lists of priorities for the countries in terms of finding solutions to the rapid scientific and radical them. and that transport costs constitute an important component of total costs borne by the municipal districts in the process of disposal of solid waste, so any improvement in the
... Show MoreIn this paper, the proposed phase fitted and amplification fitted of the Runge-Kutta-Fehlberg method were derived on the basis of existing method of 4(5) order to solve ordinary differential equations with oscillatory solutions. The recent method has null phase-lag and zero dissipation properties. The phase-lag or dispersion error is the angle between the real solution and the approximate solution. While the dissipation is the distance of the numerical solution from the basic periodic solution. Many of problems are tested over a long interval, and the numerical results have shown that the present method is more precise than the 4(5) Runge-Kutta-Fehlberg method.
In this article, the lattice Boltzmann method with two relaxation time (TRT) for the D2Q9 model is used to investigate numerical results for 2D flow. The problem is performed to show the dissipation of the kinetic energy rate and its relationship with the enstrophy growth for 2D dipole wall collision. The investigation is carried out for normal collision and oblique incidents at an angle of . We prove the accuracy of moment -based boundary conditions with slip and Navier-Maxwell slip conditions to simulate this flow. These conditions are under the effect of Burnett-order stress conditions that are consistent with the discrete Boltzmann equation. Stable results are found by using this kind of boundary condition where d
... Show MoreAll modern critical approaches attempt to cover the meanings and overtones of the text, claiming that they are better than others in the analysis and attainment of the intended meanings of the text. The structural approach claims to be able to do so more than any other modern critical approach, as it claimed that it is possible to separate what is read from the reader, on the presumed belief that it is possible to read the text with a zero-memory. However, the studies in criticism of criticism state that each of these approaches is successful in dealing with the text in one or more aspects while failing in one or more aspects. Consequently, the criticism whether the approach possesses the text, or that the text rejects this possession, r
... Show MoreThis paper focuses on the most important element of scientific research: the research problem which is confined to the concept of concern or concern surrounding the researcher about any event or phenomenon or issue paper and need to be studied and addressed in order to find solutions for them, to influence the most scientific research steps from asking questions and formulating hypotheses, to employ suitable methods and tools to choose the research and sample community, to employ measurement and analysis tools. This problem calls for a great effort by the researcher intellectually or materially to develop solutions.
In this paper, we consider a new approach to solve type of partial differential equation by using coupled Laplace transformation with decomposition method to find the exact solution for non–linear non–homogenous equation with initial conditions. The reliability for suggested approach illustrated by solving model equations such as second order linear and nonlinear Klein–Gordon equation. The application results show the efficiency and ability for suggested approach.