This study aimed to identify the alterations of liver in the quail (Coturnix coturnix) exposed by nanosilver particles.45 quail (females) were collected from agriculture research center in Abu-Ghraib, divided into (6) groups including: T1(12 quails were exposed to 4ppm), T2 (12 quails were exposed to 8ppm) and T3 (12 quails were exposed to 12ppm) of silver nanoparticles solution for 60 days. As well as three groups for control (3 females for each). Birds were dissected to isolate livers for histological preperations after fixation with Bouin's fluid, Routine stains Hematoxyline and eosin were used. Histological study showed that the structure of liver in a control groups consist of hepatocytes arranged radially cords around the central vein, Polygonal in shape with central nucleus. Sinusoid found between hepatocytes cords. The histological alterations in liver tissue included congestion of central vein, Fibrinous exudates , Infilteation of inflammatory cells, Thickness of capsule , Loss radial arrangement of hepatocytes , Incidence of fatty degeneration, Hydropic and Hyaline degeneration of hepatocytes , Appearing of councilman bodies, Pyknotic necrosis and few dilated of sinusoids in liver of group exposed to 4ppm. While the alterations in the liver with group 8ppm included occurance of precipitation of proteins near the vessels which known Amylloid , central vein dilation, An increase thickness of wall blood vessels, In addition an incidence of hemorrhage and hyaline degeneration of liver cells. Liver in group 12ppm suffer from incidence of fatty changes, Hydropic degeneration, Necrosis, Increase numbers of Concilman bodies, An incidence of giant cells, Atrophy of liver cells, Appearance of caceous necrosis and increase dilation of sinusoids and congestion.
Nosocomial infection is acquired contamination of hospitals and health care units caused by multidrug resistant bacteria. Currently, bacterial resistance to antimicrobial medication represents a complicated public health problem. Recent studies on the antimicrobial activity of silver nanoparticles (AgNPs) attracted researchers worldwide to focus on the safe synthesis of AgNPs as antimicrobial agents against multidrug resistant bacteria. The antimicrobial efficacy of AgNPs on pathogenic bacteria isolated from clinical cases of acquired hospital infection was targeted in this project. Fifty specimens of stool were collected through private laboratories in Baghdad from patients who suffered diarrheal symptoms. Bacterial isolation, identific
... Show MoreBackground: Colonization of soft denture liners by Candida albicans and other microorganisms continued to be a serious problem. The aim of this study was to evaluate the effect of incorporating silver nanoparticles into heat cured acrylic-based soft denture liner on the antifungal activity, and on water sorption, solubility, shear bond strength and color change of the soft lining material. Furthermore, evaluating the amount of silver released. Materials and methods: Silver nanoparticles were incorporated into soft denture liner in different percentages (0.05%, 0.1% and 0.2% by weight). Four hundred and twenty specimens were prepared and divided into five groups according to the test to be performed. The antifungal activity of the soft liner
... Show MoreThe wound healing process is incredibly intricate, consisting of a series of cellular activities. Although, this complex process has the potential to degenerate and result in chronic wound problems that are resistant to biological healing mechanisms. Nanoparticles can help to reduce inflammation, promote tissue regeneration, and accelerate wound healing. The proteolytic enzymes are believed to break down proteins and other molecules that can cause inflammation and impede the healing process. Wound was created in vivo using adult mice, and by taking blood samples the hematological parameters were evaluated to detected the effects of bromelain, silver nanoparticles and Br-AgNPs. The results shows an increased in white blood cells WBC, RBC, MC
... Show MoreBromelain is a proteolytic enzyme rich in cysteine proteases, extracted from the stem and fruit of pineapple (Ananas comosus). There are several therapeutic applications of the bromelain enzyme, where it has anti-inflammatory, anti-cancer, and antimicrobial activity, reduces joint pain, and accelerates wound healing. In the current study, bromelain enzyme was loaded on silver nanoparticles (Br-AgNPs) prepared using the citrate-reduction Turkevich method. Different characterization analyses were performed, including UV-Vis spectrophotometers, FTIR, SEM, and XRD analyses. Moreover, the antioxidant activity of prepared Br-AgNPs was evaluated by DPPH assay. The results of UV-Vis showed a peak at 434 nm, which referred to the AgNPs f
... Show MoreCutaneous leishmaniasis is a disease caused by Leishmania tropica parasite. Current treatments for this parasite are undesirable because of their toxicity, resistance, and high cost. Macrophages are key players against pathogens. Nitric oxide (NO), a molecule produce by immune cells, controls intracellular killing of pathogens during infection. Silver nanoparticles (Ag NPs) demonstrated broad-spectrum activity against various types of infectious diseases. It has the ability to stimulate oxygen species production. This study aims to analyze the macrophages activation through NO production and estimate the cytotoxicity based on the lactate dehydrogenase (LDH) release upon exposure to L. tropica and
... Show MoreSince decades silver was depended worldwide as a treatment to a lot of diseases
ranging from burn infections, anthrax, and typhoid fever to bacterial conjunctivitis
in stillbirth, but its effectiveness against biofilms is still undetermined. Salmonella is
a major cause of food poisoning outbreaks especially in the third world countries.
Thus, in the present study; the antimicrobial activity of silver nanoparticles (Ag-
NPs) against Salmonella enterica biofilm was examined; their activity was
compared with amino acid; D-Glycin and imipenem antibiotic. The result of the
study revealed that Ag-NPs exhibited considerable antimicrobial property against
Salmonella enterica biofilm where the minimum inhibitory concentrat
In this article Silver nanoparticles have been synthesized through physical method where the Nd-YAG laser has been used.The antimicrobial activities of these silver nanoparticles were investigated on two types of bacteria Escherichia coli and Staphylococcus aureus. These bacteria were used as representatives of Gram-negative and Gram-positive bacteria, respectively. Two experiments have been made The first one was to test the effectiveness of silver nanoparticles as an antimicrobial agent on Gram negative bacteria Escherichia coli and Gram positive bacteria Staphylococcus aureus, while the other one (susceptibility Test) was to evaluate antimicrobial agents effective against bacteria resistant to multiple antibiotics. This study showed t
... Show MoreSilver nanoparticles synthesized from aqueoes extract for mushroom pleurotus ostreatus. Silver nanoparticles were showing good antibacterial activity. The antibacterial activity conducted against different pathogenic bacteria such as Serratia marcescens, Pseudomonas fluorescens, Listeria, Methicillin-resistant Staphylococcus aureus (MARSA), Proteus mirabilis, Proteus vulgaris and Klebsiella pneumoniae. The maximum inhibition zone was observed against S. marcesance. However, the lowest inhibition zone was found against P. fluorescens.
Influence of metal nanoparticles synthesized by microorganisms upon soil-borne microscopic fungus Aspergillus terreus K-8 was studied. It was established that the metal nanoparticles synthesized by microorganisms affect the enzymatic activity of the studied culture. Silver nanoparticles lead to a decrease in cellulase activity and completely suppress the amylase activity of the fungus, while copper nanoparticles completely inhibit the activity of both the cellulase complex and amylase. The obtained results imply that the large-scale use of silver and copper nanoparticles may disrupt biological processes in the soil and cause change in the physiological and biochemical state of soil-borne microorganisms as well.