Preferred Language
Articles
/
bsj-2109
A New Three Step Iterative Method without Second Derivative for Solving Nonlinear Equations
...Show More Authors

In this paper , an efficient new procedure is proposed to modify third –order iterative method obtained by Rostom and Fuad [Saeed. R. K. and Khthr. F.W. New third –order iterative method for solving nonlinear equations. J. Appl. Sci .7(2011): 916-921] , using three steps based on Newton equation , finite difference method and linear interpolation. Analysis of convergence is given to show the efficiency and the performance of the new method for solving nonlinear equations. The efficiency of the new method is demonstrated by numerical examples.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jun 23 2019
Journal Name
Journal Of The College Of Basic Education
Numerical Solution of Non-linear Delay Differential Equations Using Semi Analytic Iterative Method
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Sat Jan 20 2024
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Novel Approximate Solutions for Nonlinear Blasius Equations
...Show More Authors

The method of operational matrices based on different types of polynomials such as Bernstein, shifted Legendre and Bernoulli polynomials will be presented and implemented to solve the nonlinear Blasius equations approximately. The nonlinear differential equation will be converted into a system of nonlinear algebraic equations that can be solved using Mathematica®12. The efficiency of these methods has been studied by calculating the maximum error remainder ( ), and it was found that their efficiency increases as the polynomial degree (n) increases, since the errors decrease. Moreover, the approximate solutions obtained by the proposed methods are compared with the solution of the 4th order Runge-Kutta meth

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Heun Method Using to Solve System of NonLinear Functional Differential Equations
...Show More Authors

In this paper Heun method has been used to find numerical solution for first order nonlinear functional differential equation. Moreover, this method has been modified in order to treat system of nonlinear functional differential equations .two numerical examples are given for conciliated the results of this method.

View Publication Preview PDF
Crossref
Publication Date
Wed Nov 05 2014
Journal Name
International Journal Of Applied Mathematical Research
Approximate solution of a model describing biological species living together using a new iterative method
...Show More Authors

View Publication
Crossref (2)
Crossref
Publication Date
Wed Feb 01 2023
Journal Name
Baghdad Science Journal
Efficient Approach for Solving (2+1) D- Differential Equations
...Show More Authors

     In this article, a new efficient approach is presented to solve a type of partial differential equations, such (2+1)-dimensional differential equations non-linear, and nonhomogeneous. The procedure of the new approach is suggested to solve important types of differential equations and get accurate analytic solutions i.e., exact solutions. The effectiveness of the suggested approach based on its properties compared with other approaches has been used to solve this type of differential equations such as the Adomain decomposition method, homotopy perturbation method, homotopy analysis method, and variation iteration method. The advantage of the present method has been illustrated by some examples.

View Publication Preview PDF
Scopus (7)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Gazi University Journal Of Science
Reliable Iterative Methods for Solving the Falkner-Skan Equation
...Show More Authors

View Publication
Crossref (7)
Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Baghdad Science Journal
A New Two Derivative FSAL Runge-Kutta Method of Order Five in Four Stages
...Show More Authors

A new efficient Two Derivative Runge-Kutta method (TDRK) of order five is developed for the numerical solution of the special first order ordinary differential equations (ODEs). The new method is derived using the property of First Same As Last (FSAL). We analyzed the stability of our method. The numerical results are presented to illustrate the efficiency of the new method in comparison with some well-known RK methods.

View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Apr 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Galerkin-Implicit Methods for Solving Nonlinear Hyperbolic Boundary Value Problem
...Show More Authors

This paper is concerned with finding the approximation solution (APPS) of a certain type of nonlinear hyperbolic boundary value problem (NOLHYBVP).  The given BVP is written in its discrete (DI) weak form (WEF), and is proved that  it has a unique APPS, which is obtained via the mixed Galerkin finite element method (GFE) with implicit method (MGFEIM) that reduces the problem to solve the Galerkin nonlinear algebraic system  (GNAS).  In this part, the predictor and the corrector technique (PT and CT) are proved convergent and are used to transform the obtained GNAS to  linear (GLAS ), then the GLAS is solved using the Cholesky method (ChMe). The stability and the convergence of the method are studied. The results

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Sep 07 2014
Journal Name
Baghdad Science Journal
A New Operational Matrix of Derivative for Orthonormal Bernstein Polynomial's
...Show More Authors

View Publication Preview PDF
Crossref
Publication Date
Wed Jul 01 2020
Journal Name
Journal Of Physics: Conference Series
A New Iterative Methods For a Family of Asymptotically Severe Mappings
...Show More Authors
Abstract<p>The aim of this paper is to introduce the concepts of asymptotically p-contractive and asymptotically severe accretive mappings. Also, we give an iterative methods (two step-three step) for finite family of asymptotically p-contractive and asymptotically severe accretive mappings to solve types of equations.</p>
View Publication
Scopus (5)
Crossref (2)
Scopus Crossref