In this paper the oscillation criterion was investigated for all solutions of the third-order half linear neutral differential equations. Some necessary and sufficient conditions are established for every solution of (a(t)[(x(t)±p(t)x(?(t) ) )^'' ]^? )^'+q(t) x^? (?(t) )=0, t?t_0, to be oscillatory. Examples are given to illustrate our main results.
This paper introduces a generalization sequence of positive and linear operators of integral type based on two parameters to improve the order of approximation. First, the simultaneous approximation is studied and a Voronovskaja-type asymptotic formula is introduced. Next, an error of the estimation in the simultaneous approximation is found. Finally, a numerical example to approximate a test function and its first derivative of this function is given for some values of the parameters.
Recently, in 2014 [1] the authors introduced a general family of summation integral Baskakov-type operators ( ) . In this paper, we investigate approximation properties of partial sums for this general family.
This research includes the use of an artificial intelligence algorithm, which is one of the algorithms of biological systems which is the algorithm of genetic regulatory networks (GRNs), which is a dynamic system for a group of variables representing space within time. To construct this biological system, we use (ODEs) and to analyze the stationarity of the model we use Euler's method. And through the factors that affect the process of gene expression in terms of inhibition and activation of the transcription process on DNA, we will use TF transcription factors. The current research aims to use the latest methods of the artificial intelligence algorithm. To apply Gene Regulation Networks (GRNs), we used a progr
... Show MoreThis paper presents an alternative method for developing effective embedded optimized Runge-Kutta (RK) algorithms to solve oscillatory problems numerically. The embedded scheme approach has algebraic orders of 5 and 4. By transforming second-order ordinary differential equations (ODEs) into their first-order counterpart, the suggested approach solves first-order ODEs. The amplification error, phase-lag, and first derivative of the phase-lag are all nil in the embedded pair. The alternative method’s absolute stability is demonstrated. The numerical tests are conducted to demonstrate the effectiveness of the developed approach in comparison to other RK approaches. The alternative approach outperforms the current RK methods
... Show MoreThe purpose of this investigation is to determine and analyze the fluid inertia of electroosmotic flow on the Cu-water nanofluids by peristaltic transport. Fluid flow properties and heat transfer characteristics are studied for aqueous ionic nanofluids through a vertical microtube of a constant radius. Streamlines are plotted for the governing fluid flow.
In this article, we define and study a family of modified Baskakov type operators based on a parameter . This family is a generalization of the classical Baskakov sequence. First, we prove that it converges to the function being approximated. Then, we find a Voronovsky-type formula and obtain that the order of approximation of this family is . This order is better than the order of the classical Baskakov sequence whenever . Finally, we apply our sequence to approximate two test functions and analyze the numerical results obtained.
The work in this paper focuses on solving numerically and analytically a nonlinear social epidemic model that represents an initial value problem of ordinary differential equations. A recent moking habit model from Spain is applied and studied here. The accuracy and convergence of the numerical and approximation results are investigated for various methods; for example, Adomian decomposition, variation iteration, Finite difference and Runge-Kutta. The discussion of the present results has been tabulated and graphed. Finally, the comparison between the analytic and numerical solutions from the period 2006-2009 has been obtained by absolute and difference measure error.
The investigation of determining solutions for the Diophantine equation over the Gaussian integer ring for the specific case of is discussed. The discussion includes various preliminary results later used to build the resolvent theory of the Diophantine equation studied. Our findings show the existence of infinitely many solutions. Since the analytical method used here is based on simple algebraic properties, it can be easily generalized to study the behavior and the conditions for the existence of solutions to other Diophantine equations, allowing a deeper understanding, even when no general solution is known.
In this paper , we study some approximation properties of the strong difference and study the relation between the strong difference and the weighted modulus of continuity
Receipt date:3/13/2021 accepted date:5/26/2021 Publication date:12/31/2021
This work is licensed under a Creative Commons Attribution 4.0 International License.
energy is one of the strategic resources within international politics, and this is through the existing competition between the international powers on it, and the global powers have begun to rely on interest in new areas, such as import, depending on new projects an
... Show More