The electron correlation for inter-shells (1s 2p), (1s 3p) and (1s 3d) was described by the inter-particle radial distribution function f(r12). It was evaluated for Li-atom in the different excited states (1s2 2p), (1s2 3p) and (1s2 3d) using Hartree-Fock approximation (HF). The inter particle expectation values for these shells were also evaluated. The calculations were performed using Mathcad 14 program.
The effect of short range correlations on the inelastic longitudinal Coulomb form
factors for the lowest four excited 2+ states in 18O is analyzed. This effect (which
depends on the correlation parameter β) is inserted into the ground state charge
density distribution through the Jastrow type correlation function. The single particle
harmonic oscillator wave function is used with an oscillator size parameter b. The
parameters β and b are, considered as free parameters, adjusted for each excited state
separately so as to reproduce the experimental root mean square charge radius of
18O. The model space of 18O does not contribute to the transition charge density. As
a result, the inelastic Coulomb form factor of 18
The ionospheric characteristics exhibit significant variations with the solar cycle, geomagnetic conditions, seasons, latitudes and even local time. Representation of this research focused on global distribution of electron (Te) and ion temperatures (Ti) during great and severe geomagnetic storms (GMS), their daily and seasonally variation for years (2001-2013), variations of electron and ion temperature during GMS with plasma velocity and geographic latitudes. Finally comparison between observed and predicted Te and Ti get from IRI model during the two kinds of storm selected. Data from satellite Defense Meteorological Satellite Program (DMSP) 850 km altitude are taken for Te, Ti and plasma velocity for different latitudes during great
... Show More
We have presented the distribution of the exponentiated expanded power function (EEPF) with four parameters, where this distribution was created by the exponentiated expanded method created by the scientist Gupta to expand the exponential distribution by adding a new shape parameter to the cumulative function of the distribution, resulting in a new distribution, and this method is characterized by obtaining a distribution that belongs for the exponential family. We also obtained a function of survival rate and failure rate for this distribution, where some mathematical properties were derived, then we used the method of maximum likelihood (ML) and method least squares developed (LSD)
... Show MorePlasma generated by a 1064 nm pulsed Nd: YAG laser with pulse duration of 10 ns concentrated onto an Al solid target under vacuum pressure was examined spectroscopically. The temperature and electron density specifying the plasma were measured by time-resolved spectroscopy of neutral atom and ion line emissions in the time period range of 300–2000 ns. An echelle spectrograph is utilized to appear the plasma emission lines. The temperature was obtained using the spectral line comparison method and the electron density was calculated using the Stark Broadening (SB) method. The electron density was characterized as a function of laser pulse energy. The time range where the plasma is optically thin and is also in local thermodynamic equilibri
... Show MoreThe nuclear matter density distributions, elastic electron scattering charge formfactors and root-mean square (rms) proton, charge, neutron and matter radii arestudied for neutron-rich 6,8He and 19C nuclei and proton-rich 8B and 17Ne nuclei. Thelocal scale transformation (LST) are used to improve the performance radial wavefunction of harmonic-oscillator wave function in order to generate the long tailbehavior appeared in matter density distribution at high . A good agreement resultsare obtained for aforementioned quantities in the used model.
A computerized investigation has been carried out on the design of six electrodes electrostatic lenses used in electron gun application. The Finite-Element Method (FEM) was used in the solution of Laplace equation for determine the axial potential distribution. The electron trajectory under zero magnification condition. The optical properties, spherical and chromatic aberrations, the object and image focal length and object and image position are calculated. A very good futures for the electron gun with these lenses have been computed where are a beam current of 8.7*10-7A can be supplied using cathode tip of radius 10nm.
In this work, electron number density calculated using Matlab program code with the writing algorithm of the program. Electron density was calculated using Anisimov model in a vacuum environment. The effect of spatial coordinates on the electron density was investigated in this study. It was found that the Z axis distance direction affects the electron number density (ne). There are many processes such as excitation; ionization and recombination within the plasma that possible affect the density of electrons. The results show that as Z axis distance increases electron number density decreases because of the recombination of electrons and ions at large distances from the target and the loss of thermal energy of the electrons in
... Show Morepaper
In this paper, an estimate has been made for parameters and the reliability function for Transmuted power function (TPF) distribution through using some estimation methods as proposed new technique for white, percentile, least square, weighted least square and modification moment methods. A simulation was used to generate random data that follow the (TPF) distribution on three experiments (E1 , E2 , E3) of the real values of the parameters, and with sample size (n=10,25,50 and 100) and iteration samples (N=1000), and taking reliability times (0< t < 0) . Comparisons have been made between the obtained results from the estimators using mean square error (MSE). The results showed the
... Show More