The electron correlation for inter-shells (1s 2p), (1s 3p) and (1s 3d) was described by the inter-particle radial distribution function f(r12). It was evaluated for Li-atom in the different excited states (1s2 2p), (1s2 3p) and (1s2 3d) using Hartree-Fock approximation (HF). The inter particle expectation values for these shells were also evaluated. The calculations were performed using Mathcad 14 program.
This paper presents the effect of relativistic and ponderomotive nonlinearity on cross-focusing of two intense laser beams in a collisionless and unmagnetized plasma. It should be noted here that while considering the self-focusing due to relativistic electron mass variation, the electron ponderomotive density depression in the channel may also be important. Therefore/these two nonlinearties may simultaneously affect the self-focusing process. These nonlinearities depend not only on the intensity of one laser but also on the second laser. Therefore, one laser beam affects the dynamics of the second beam and hence the process of cross-focusing takes place. The electric field amplitude of the excited electron plasma wave (EPW) has been cal
... Show MoreIn this article, we developed a new loss function, as the simplification of linear exponential loss function (LINEX) by weighting LINEX function. We derive a scale parameter, reliability and the hazard functions in accordance with upper record values of the Lomax distribution (LD). To study a small sample behavior performance of the proposed loss function using a Monte Carlo simulation, we make a comparison among maximum likelihood estimator, Bayesian estimator by means of LINEX loss function and Bayesian estimator using square error loss (SE) function. The consequences have shown that a modified method is the finest for valuing a scale parameter, reliability and hazard functions.
Inelastic longitudinal electron scattering C2 form factor in 48Ca has been utilized
to study the effects of fitting parameters on the sigma meson exchange type
potentials as a residual interaction. By coupling the core particles with model space
particle, where the latter used as an active part of residual interaction in the so called
core polarization process, it is included as a correction with first order perturbation
theory to the main calculation of model space, and the excitation energy has been
carried out with ( ). A model space wave vectors are generated in full fp shell
model with FPD6 as effective interaction with mixing configuration technique and
harmonic oscillator as a single particle wave function.
In this paper, Bayes estimators for the shape and scale parameters of Gamma distribution under the Entropy loss function have been obtained, assuming Gamma and Exponential priors for the shape and scale parameters respectively. Moment, Maximum likelihood estimators and Lindley’s approximation have been used effectively in Bayesian estimation. Based on Monte Carlo simulation method, those estimators are compared depending on the mean squared errors (MSE’s). The results show that, the performance of the Bayes estimator under Entropy loss function is better than other estimates in all cases.
This paper deals with, Bayesian estimation of the parameters of Gamma distribution under Generalized Weighted loss function, based on Gamma and Exponential priors for the shape and scale parameters, respectively. Moment, Maximum likelihood estimators and Lindley’s approximation have been used effectively in Bayesian estimation. Based on Monte Carlo simulation method, those estimators are compared in terms of the mean squared errors (MSE’s).
In this paper, suggested formula as well a conventional method for estimating the twoparameters (shape and scale) of the Generalized Rayleigh Distribution was proposed. For different sample sizes (small, medium, and large) and assumed several contrasts for the two parameters a percentile estimator was been used. Mean Square Error was implemented as an indicator of performance and comparisons of the performance have been carried out through data analysis and computer simulation between the suggested formulas versus the studied formula according to the applied indicator. It was observed from the results that the suggested method which was performed for the first time (as far as we know), had highly advantage than t
... Show MoreThe goal (purpose) from using development technology that require mathematical procedure related with high Quality & sufficiency of solving complex problem called Dynamic Programming with in recursive method (forward & backward) through finding series of associated decisions for reliability function of Pareto distribution estimator by using two approach Maximum likelihood & moment .to conclude optimal policy
The two-neutron halo-nuclei (17B, 11Li, 8He) was investigated using a two-body nucleon density distribution (2BNDD) with two frequency shell model (TFSM). The structure of valence two-neutron of 17B nucleus in a pure (1d5/2) state and in a pure (1p1/2) state for 11L and 8He nuclei. For our tested nucleus, an efficient (2BNDD's) operator for point nucleon system folded with two-body correlation operator's functions was used to investigate nuclear matter density distributions, root-mean square (rms) radii, and elastic electron scattering form factors. In the nucleon-nucleon forces the correlation took account of
... Show MoreThe charge density distributions of 10 B nucleus are calculated using the
harmonic oscillator wave functions. Elastic and inelastic electron scattering
longitudinal form factors have been calculated for the similar parity states of 10B
nucleus where a core of 4He is assumed and the remaining particles are
distributed over 3/ 2 1p and 1/ 2 1p orbits which form the model space.
Core-polarization effects are taken into account. Core-polarization effects are
calculated by using Tassie model and gives good agreement with the measured
data.