2-benzamide benzothiazole complexes of Pd(II) , Pt(IV) and Au(III) ions were prepared by microwave assisted radiation. The ligand and the complexes were isolated and characterized in solid state by using FT-IR, UV-Vis spectroscopy, flame atomic absorption, elemental analysis CHNS , magnetic susceptibility measurements , melting points and conductivity measurements. The nature of complexes in liquid state was studied by following the molar ratio method which gave results approximately identical to those obtained from isolated solid state; also, stability constant of the prepared complexes were studied and found that they were stable in molar ratio 1:1.The complexes have a sequar planner geometry except Pt(IV) complex has octahedral . A theoretical treatment of ligand and its metal complexes in gas phase were studied using HyperChem-8 program, moreover, ligand in gas phase also has been studied using Gaussian program(GaussView Currently Available Version (5.0.9) along with Gaussian 09 which was the latest in the Gaussian series of programs).
In this work, solid random gain media were fabricated from laser dye solutions containing nanoparticles as scattering centers. Two different rhodamine dyes (123 and 6G) were used to host the highly-pure titanium dioxide nanoparticles to form the random gain media. The spectroscopic characteristics (mainly fluorescence) of these media were determined and studied. These random gain media showed laser emission in the visible region of electromagnetic spectrum. Fluorescence characteristics can be controlled to few nanometers by adjusting the characteristics of the host and nanoparticles as well as the preparation conditions of the samples. Emission of narrow linewidth (3nm) and high intensity in the visible region (533-537nm) was obtained.
In this paper, a theoretical investigation was suggested to study underwater wireless optical communication (UWOC) system based on multiple input–multiple output (MIMO) technique. The modulation schemes such as RZ-OOK, NRZ-OOK, 32-PPM and 4-QAM applied under different coastal water types. MIMO technique enabled the system to transmit data rate with longer distance link. The performance of the proposed system examined by BER and data rate as a metrics. Several impairments such as the types of water by the attenuation of coastal water and the distance link were taken into account for the transmission of the optical signal to appreciate the reliability of the MIMO technique. The theore
A batch adsorption system was applied to study the adsorption of methylene blue from aqueous solution by Iraqi bentonite and treated bentonite with different amount of zinc oxide (ZnO). The adsorption capacities of methylene blue onto bentonite were evaluated. The equilibrium between liquid and solid phase was described by Langmuir model better than the Freundlich model. Langmuir and Freundlich constants have been determined. The separation factor or equilibrium parameter, RL which is used to predict if an adsorption system is favourable or unfavourable was calculated for all cases.
In this work, the finite element analysis of moving coordinates has been used to study the thermal behavior of the tissue subjected to both continuous wave and pulsed CO2 laser. The results are compared with previously published data, and a good agreement has been found, which verifies the implemented theory. Some conclusions are obtained; As pulse width decreases, or repetition rate increases, or fluence increases then the char depth is decreased which can be explained by an increase in induced energy or its rate, which increases the ablation rate, leading to a decrease in char depth. Thus: An increase in the fluence or decreasing pulse width or increasing repetition rate will increase ablation rate, which will increase the depth of cut
... Show MoreIn this paper, we present new algorithm for the solution of the nonlinear high order multi-point boundary value problem with suitable multi boundary conditions. The algorithm is based on the semi-analytic technique and the solutions are calculated in the form of a rapid convergent series. It is observed that the method gives more realistic series solution that converges very rapidly in physical problems. Illustrative examples are provided to demonstrate the efficiency and simplicity of the proposed method in solving this type of multi- point boundary value problems.
The corrosion behavior of Titanium in a simulated saliva solution was improved by Nanotubular Oxide via electrochemical anodizing treatment using three electrodes cell potentiostat at 37°C. The anodization treatment was achieved in a non-aqueous electrolyte with the following composition: 200mL ethylene glycol containing 0.6g NH4F and 10 ml of deionized water and using different applied directed voltage at 10°C and constant time of anodizing (15 min.). The anodized titanium layer was examined using SEM, and AFM technique.
The results showed that increasing applied voltage resulted in formation titanium oxide nanotubes with higher corrosion resistance
In this paper a modified approach have been used to find the approximate solution of ordinary delay differential equations with constant delay using the collocation method based on Bernstien polynomials.