Some new complexes of 4-(5-(1,5-dimethyl-3-oxo-2-phenyl pyrazolidin-4- ylimino)-3,3-dimethyl cyclohexylideneamino) -1,5- dimethyl-2- phenyl -1H- pyrazol -3(2H) –one (L) with Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Pd(II), Re(V) and Pt(IV) were prepared. The ligand and its metal complexes were characterized by phisco- chemical spectroscopic techniques. The spectral data were suggested that the (L) as a neutral tetradentate ligand is coordinated with the metal ions through two nitrogen and two oxygen atoms. These studies revealed Octahedral geometries for all metal complexes, except square planar for Pd(II) complex. Moreover, the thermodynamic activation parameters, such as ?E*, ?H, ?S, ?G and K are calculated from the TGA curves using Coats –Redfern method. Hyper Chem -8 program has been used to predict structural geometries for compounds in gas phase. The heat of formation (?Hf) and bin ding energy (?Eb) at 298 °K for the free ligand and its metal complexes were calculated by PM3 method. The synthesized ligands and their metal complexes were screened for their biological activity against bacterial species, two Gram positive bacteria (Bacillus subtilis and Staphylococcus aureus) and two Gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa).
Ethylenediamine was reacted in the first step with 2,5 – hexandion to produce the precursor [A] , then [A] was reacted with diethylmalonate to give the new tetradentate macrocyclic Ligand [H2L].This Ligand was reacted with some metal ions in ethanol to give a series of new metal complexes of the general formula [M(HnL)X]m ( where : M= CrIII , n = 0 , X= Cl2 , m= -1 ; M = MnII , FeII , NiII , CuII , n = 1 , X= Cl2 , m = -1 ; M = CoII , n = 0 , X = Cl , m = -1 ; M = PdII , n = 0 , X=0 , m = 0 ; M = CdII , n = 2 , X = 0 , m = +2 . All compounds were characterize
... Show MoreA new heterocyclic Schiff bases ligand (HL) derived from condensation of 2-Amino-4-methylbenzothiazole with 4-Diethylaminosalicylaldehyde have been synthesized and characterized by (FTIR & UV.Vis) spectroscopies, (1H & 13C)NMR spectra, mass spectrum, elemental microanalysis (C,H,N,S). Metal complexes with Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) ions have been also synthesized and characterized by (FTIR & UV.Vis) spectroscopies, flame atomic absorption, molar conductivity measurements and magnetic susceptibility. These studies indicate that the mole ratio (L:M) is (2:1) for Co(II) complex and (1:1) for other complexes. The spectral results indicate that the ligand coordinates with met
... Show MoreThe ligand Schiff base [(E)-3-(2-hydroxy-5-methylbenzylideneamino)- 1- phenyl-1H-pyrazol-5(4H) –one] with some metals ion as Mn(II); Co(II); Ni(II); Cu(II); Cd(II) and Hg(II) complexes have been preparation and characterized on the basic of mass spectrum for L, elemental analyses, FTIR, electronic spectral, magnetic susceptibility, molar conductivity measurement and functions thermodynamic data study (∆H°, ∆S° and ∆G°). Results of conductivity indicated that all complexes were non electrolytes. Spectroscopy and other analytical studies reveal distorted octahedral geometry for all complexes. The antibacterial activity of the ligand and preparers metal complexes was also studied against gram and negative bacteria.
In this work, prepared new ligand namely 5-(2,4-dichloro-phenyl)-1,3,4-oxadiazole-2-(3H)-thion, was obtained from the 2,4-dichlorobenzoyl chloride with hydrazine, after that reaxtion with CS2/KOH in methanol.
Mn(II), Co(II), Ni(II), Cu(II), and Cr(III) metal complexes with the ligand (L) [3-(2nitro benzylidene) amino-2-thioxoimidazolidin-4-one] have been prepared and characterized in their solid state using the elemental micro analysis (C.H.N.S), flame atomic absorption, UV-Vis spectroscopy, FT-IR, magnetic susceptibility measurements, and electrical molar conductivity. The ratio of metal to ligand [M:L] was got for all complexes in the ethanol by using the molar ratio method, which produced comparable results with those results obtained for the solid complexes. From the data of all techniques, octahedral geometry was proposed for Cr(III), Mn(II), and Co(II) complexes, while tetrahedral structure was proposed for Ni(II), Cu(II) complexes.
D-mannose sugar was used to prepare [benzoic acid 6-formyl-2,2-dimethyl-tetrahydrofuro[3,4-d][1,3]dioxol-4-yl ester] (compound A). The condensation reaction of folic acid with (compound A) resulted in the formation of new ligand [L]. These compounds were characterized by elemental analysis CHN, atomic absorption A.A, (FT-I.R.), (U.V.-Vis), TLC, E.S. mass (for electrospray), molar conductance, and melting point. The new tetradentate ligand [L], reacted with two moles of some selected metal ions and two moles of (2-aminophenol), (metal : ligand : 2-aminophenol) at reflux in water medium to give a series of new complexes of the general formula K2[M2(L)(HA)2] where M= Co(II), Ni(II), Cu(II) an
... Show MoreThe mixed ligand complexes of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) with alanine and 8-hydroxyqinoline (Oxine) were synthesized and characterized by FT-IR ,spectra electronic, flam-AAS] along with conductivity measurements , solubility , melting point, magnetic susceptipibility.The synthesized complexes were tested in vitro for antimicrobial activity. The results obtained indicated that some of these complexes are more active than with others.
Complexes of some metal ions ( Mn(I? ) , Co(??) , Ni(??) ,Cu (??) , Zn(I?) , Cd (??) , and Hg(??) ) with 8-hydroxyquinoline (Oxine) and 2- Picoline (2-pic ) have been synthesized and characterized on the basis of their FT-IR. and Uv-visible spectroscopy ,atomic absorption molar conductivity measurements and magnetic susceptibility ,from the results obtained the following general formula has been given for prepared complexes [M (oxine)2 (2-pic)2]where M = M(??) = Mn , Co , Ni , Cu , Zn , Cd , Hg(oxine)- = ionic ligand 8-hydroxyquinolin (oxinato)(2- pic) = 2- picoline
In this article, new Schiff base ligand LH-prepared Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II), Pd(II), and Pt(II) materials were analyzed using spectroscopy (1 Metal: 2 LH). The ligand was identified using techniques such as FTIR, UV-vis, 1H-13C-NMR, and mass spectra, and their complexes were identified using CHN microanalysis, UV-vis and FTIR spectral studies, atomic absorption, chloride content, molar conductivity measurements, and magnetic susceptibility. According to the measurements, the ligand was bound to the divalent metal ions as a bidentate through oxygen and nitrogen atoms. The complexes that were created had microbicide activity against two different bacterial species and one type of fungus. DPPH techniques were bei
... Show More