A new series of metal ions complexes of VO(II), Cr(III), Mn(II), Zn(II), Cd(II) and Ce(III) have been synthesized from the Schiff bases (4-chlorobenzylidene)-urea amine (L1) and (4-bromobenzylidene)-urea amine (L2). Structural features were obtained from their elemental microanalyses, magnetic susceptibility, molar conductance, FT-IR, UV–Vis, LC-Mass and 1HNMR spectral studies. The UV–Vis, magnetic susceptibility and molar conductance data of the complexes suggest a tetrahedral geometry around the central metal ion except, VOII complexes that has square pyramidal geometry, but CrIII and CeIII octahedral geometry. The biological activity for the ligand (L1) and its Vanadium and Cadmium complexes were studied. Structural geometries of compounds also were suggested in gas phase by using theoretical treatments, using Hyper Chem-6 program for the molecular mechanics and semi-empirical calculations. The heat of formation (?Hf ?) and binding energy (?Eb) in the temperature of 298K for the free ligand (L1) and their metal complexes were calculated by PM3 and ZINDO/I methods. The electrostatic potential of the free ligands were calculated to investigate the reactive sites of the molecules.Bacteriological evaluation of considerable number of these compounds were maintained using organisms Escherichia coli and Staphylococcus aureus,and they were found to exhibit the high effect of activity. This may be attributed to the impact of both the Schiff bases and the metal present in these complexes.
A novel ligand, (E)-5-((2-hydroxy-4,6-dimethylphenyl)diazenyl)-2,3-dihydrophthalazine-1,4- dione, was synthesized through the reaction of 3,5-dimethylphenol with the diazonium salt of 5-amino-2,3-dihydrophthalazine-1,4-dione. The ligand underwent characterization through the utilization of diverse spectroscopic methods, including UV-Vis, FT-IR, 13C, and 1H-NMR, alongside Mass spectroscopy and micro elemental analysis (Carbon, Hydrogen, Nitrogen, and Oxygen). Metal chelates of transition metals were prepared and analyzed using elemental analysis, mass spectra, atomic absorption, UV-Vis, FT-IR spectral analysis, as well as conductivity and magnetic measurements. The investigation into the compounds’ nature was conducted by utilizing mole r
... Show MoreNanocomposite was prepared using unsaturated polyester (UP) resin as a matrix and graphene nanoparticles as a reinforcement material in six percentage weights (0, 0.1, 0.2, 0.3, 1 and 1.5%). Mechanical, calorimetric and thermal studies were performed on the (UP) resin/graphene nanocomposite. All tests showed a clear improvement of all mechanical properties examined (hardness, flexural strength (F.S), impact strength (I.S) and tensile strength (T.S)) with increasing graphene percentage. In addition, the temperature of glass transition and thermal conductivity of this composite increased with increasing graphene content.
In this paper, a methodology is presented for determining the stress and strain in structural concrete sections, also, for estimating the ultimate combination of axial forces and bending moments that produce failure. The structural concrete member may have a cross-section with an arbitrary configuration, the concrete region may consist of a set of subregions having different characteristics (i.e., different grades of concretes, or initially identical, but working with different stress-strain diagrams due to the effect of indirect reinforcement or the effect of confinement, etc.). This methodology is considering the tensile strain softening and tension stiffening of concrete in additio
Green synthesis of silver nanoparticles (AgNPs) using different plant parts has shown a great potential in medicinal and industrial applications. In this study, AgNPs were in vitro green synthesized using A. graecorum, and its antifungal and antitumoractivities were investigated. Scanning electron microscopy (SEM) image result indicated spherical shape of AgNPs with a size range of 22-36 nm indicated by using Image J program. The functional groups indicated by Fourier-transform infrared spectroscopy (FTIR) represented the groups involved in the reduction of silver ion into nanoparticles. Alhagi graecorum AgNPs inhibited MCF-7 breast cancer cell line growth in increased concentration depend manner, significant differences shown at
... Show MoreMixed ligand complexes of bivalent metal ions, viz ; M= Co(II),Ni(II),Cu(II), Zn(II), Cd (II), and Hg(II) of the composition [M(Anth)2(TMP)] in 1:2:1 molar ratio, (where . AnthrH= Anthranilic acid (C7H7NO2) and Trimethoprime (TMP) = (C14H18N4O3) have been synthesized and characterized by repeated melting point determination, Solubility, Molar conductivity (Λm ),determination the percentage of the metal (M%) in the complexes by (AAS), FT-IR, magnetic susceptibility measurements [μeff (BM)] and electronic spectral data. The two ligands and their metal complexes have been screened for their bacterial activity against selected microbial strains (Gram +ve) & (Gram -ve).
Mixed ligand complexes of bivalent metal ions, viz ; M= Co(II),Ni(II),Cu(II), Zn(II), Cd (II), and Hg(II) of the composition [M(Anth)2(TMP)] in 1:2:1 molar ratio, (where . AnthrH= Anthranilic acid (C7H7NO2) and Trimethoprime (TMP) = (C14H18N4O3) have been synthesized and characterized by repeated melting point determination, Solubility, Molar conductivity (Λm ),determination the percentage of the metal (M%) in the complexes by (AAS), FT-IR, magnetic susceptibility measurements [µeff (BM)] and electronic spectral data. The two ligands and their metal complexes have been screened for their bacterial activity against selected microbial strains (Gram +ve) & (Gram -ve).
There is currently a pressing need to create an electro-analytical approach capable of detecting and monitoring genosensors in a highly sensitive, specific, and selective way. In this work, Functionalized Multiwall Carbon Nanotubes, Graphene, Polypyrrole, and gold nanoparticles nanocomposite (f-MWCNTs-GR-PPy-AuNP) were effectively deposited on the surface of the ITO electrode using a drop-casting process to modify it. The structural, morphological, and optical analysis of the modified ITO electrodes was carried out at room temperature using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) images, atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectra. Cyclic voltammetry (CV) and electrochemi
... Show MoreCupressus sempervirens L., Cupressaceae, that is known as evergreen cypress, Mediterranean cypress and in Arabic called “al -Sarw. It is an evergreen, medium sized, longevity, and wide distributed over all the world. The plant represents an important member of conifer plants which characterized with aromatic leaves and cones. Cupressus sempervirens have been ethnobotanical uses as an antiseptic, relief of cough, astringent, antispasmodic, wound healing and anti-inflammatory. Aims of this work are phytochemical analysis, isolation and structural identification of Quercitroside (quercitrin) and essential oil in Iraqi C. sempervirens. Isolation of quercitrin was
... Show More