Preferred Language
Articles
/
bsj-2061
New Iterative Method for Solving Nonlinear Equations
...Show More Authors

The aim of this paper is to propose an efficient three steps iterative method for finding the zeros of the nonlinear equation f(x)=0 . Starting with a suitably chosen , the method generates a sequence of iterates converging to the root. The convergence analysis is proved to establish its five order of convergence. Several examples are given to illustrate the efficiency of the proposed new method and its comparison with other methods.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Using the Elzaki decomposition method to solve nonlinear fractional differential equations with the Caputo-Fabrizio fractional operator
...Show More Authors

The techniques of fractional calculus are applied successfully in many branches of science and engineering, one of the techniques is the Elzaki Adomian decomposition method (EADM), which researchers did not study with the fractional derivative of Caputo Fabrizio. This work aims to study the Elzaki Adomian decomposition method (EADM) to solve fractional differential equations with the Caputo-Fabrizio derivative. We presented the algorithm of this method with the CF operator and discussed its convergence by using the method of the Cauchy series then, the method has applied to solve Burger, heat-like, and, couped Burger equations with the Caputo -Fabrizio operator. To conclude the method was convergent and effective for solving this type of

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (4)
Scopus Crossref
Publication Date
Mon Mar 08 2021
Journal Name
Baghdad Science Journal
B-splines Algorithms for Solving Fredholm Linear Integro-Differential Equations
...Show More Authors

Algorithms using the second order of B -splines [B (x)] and the third order of B -splines [B,3(x)] are derived to solve 1' , 2nd and 3rd linear Fredholm integro-differential equations (F1DEs). These new procedures have all the useful properties of B -spline function and can be used comparatively greater computational ease and efficiency.The results of these algorithms are compared with the cubic spline function.Two numerical examples are given for conciliated the results of this method.

View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Arab Journal Of Basic And Applied Sciences
Analytic and numerical solutions for linear and nonlinear multidimensional wave equations
...Show More Authors

View Publication
Crossref (9)
Crossref
Publication Date
Thu May 30 2024
Journal Name
Journal Of Interdisciplinary Mathematics
Laplace transform-adomian decomposition approach for solving random partial differential equations
...Show More Authors

Market share is a major indication of business success. Understanding the impact of numerous economic factors on market share is critical to a company’s success. In this study, we examine the market shares of two manufacturers in a duopoly economy and present an optimal pricing approach for increasing a company’s market share. We create two numerical models based on ordinary differential equations to investigate market success. The first model takes into account quantity demand and investment in R&D, whereas the second model investigates a more realistic relationship between quantity demand and pricing.

Scopus
Publication Date
Mon Dec 04 2023
Journal Name
Aip Conf. Proc
Double LA-transform and their properties for solving partial differential equations
...Show More Authors

Scopus (6)
Scopus
Publication Date
Wed Nov 05 2014
Journal Name
International Journal Of Applied Mathematical Research
Approximate solution of a model describing biological species living together using a new iterative method
...Show More Authors

View Publication
Crossref (2)
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
International Journal Of Modern Mathematical Sciences
Coupled Laplace-Decomposition Method for Solving Klein- Gordon Equation
...Show More Authors

In this paper, we consider a new approach to solve type of partial differential equation by using coupled Laplace transformation with decomposition method to find the exact solution for non–linear non–homogenous equation with initial conditions. The reliability for suggested approach illustrated by solving model equations such as second order linear and nonlinear Klein–Gordon equation. The application results show the efficiency and ability for suggested approach.

Preview PDF
Publication Date
Mon Mar 08 2021
Journal Name
Baghdad Science Journal
First Order Nonlinear Neutral Delay Differential Equations
...Show More Authors

The author obtain results on the asymptotic behavior of the nonoscillatory solutions of first order nonlinear neutral differential equations. Keywords. Neutral differential equations, Oscillatory and Nonoscillatory solutions.

View Publication Preview PDF
Publication Date
Sun Dec 05 2010
Journal Name
Baghdad Science Journal
Stability of Nonlinear Systems of Fractional Order Differential Equations
...Show More Authors

In this paper, a sufficient condition for stability of a system of nonlinear multi-fractional order differential equations on a finite time interval with an illustrative example, has been presented to demonstrate our result. Also, an idea to extend our result on such system on an infinite time interval is suggested.

View Publication Preview PDF
Crossref
Publication Date
Fri Apr 21 2023
Journal Name
Aip Conference Proceedings
Efficient computational methods for solving the nonlinear initial and boundary value problems
...Show More Authors

In this paper, three approximate methods namely the Bernoulli, the Bernstein, and the shifted Legendre polynomials operational matrices are presented to solve two important nonlinear ordinary differential equations that appeared in engineering and applied science. The Riccati and the Darcy-Brinkman-Forchheimer moment equations are solved and the approximate solutions are obtained. The methods are summarized by converting the nonlinear differential equations into a nonlinear system of algebraic equations that is solved using Mathematica®12. The efficiency of these methods was investigated by calculating the root mean square error (RMS) and the maximum error remainder (𝑀𝐸𝑅n) and it was found that the accuracy increases with increasi

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref