Preferred Language
Articles
/
bsj-2060
Convergence of the Generalized Homotopy Perturbation Method for Solving Fractional Order Integro-Differential Equations
...Show More Authors

In this paper,the homtopy perturbation method (HPM) was applied to obtain the approximate solutions of the fractional order integro-differential equations . The fractional order derivatives and fractional order integral are described in the Caputo and Riemann-Liouville sense respectively. We can easily obtain the solution from convergent the infinite series of HPM . A theorem for convergence and error estimates of the HPM for solving fractional order integro-differential equations was given. Moreover, numerical results show that our theoretical analysis are accurate and the HPM can be considered as a powerful method for solving fractional order integro-diffrential equations.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon May 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Numerical Solution for Classical Optimal Control Problem Governing by Hyperbolic Partial Differential Equation via Galerkin Finite Element-Implicit method with Gradient Projection Method
...Show More Authors

     This paper deals with the numerical solution of the discrete classical optimal control problem (DCOCP) governing by linear hyperbolic boundary value problem (LHBVP). The method which is used here consists of: the GFEIM " the Galerkin finite element method in space variable with the implicit finite difference method in time variable" to find the solution of the discrete state equation (DSE) and the solution of its corresponding discrete adjoint equation, where a discrete classical control (DCC) is given.  The gradient projection method with either the Armijo method (GPARM) or with the optimal method (GPOSM) is used to solve the minimization problem which is obtained from the necessary conditi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 29 2016
Journal Name
Al- Mustansiriyah J. Sci.
The Approximate Solution of Newell Whitehead Segel and Fisher Equations Using The Adomian Decomposition Method
...Show More Authors

In the present work, we use the Adomian Decomposition method to find the approximate solution for some cases of the Newell whitehead segel nonlinear differential equation which was solved previously with exact solution by the Homotopy perturbation and the Iteration methods, then we compared the results.

View Publication Preview PDF
Publication Date
Thu Jun 01 2017
Journal Name
International Journal Of Science And Research
Precise Solutions of a Viscoelastic Fluid Flow in an Annular Pipe under an Impulsive Pressure with the Fractional Generalized Burgers' Model
...Show More Authors

This paper deals with an analytical study of the flow of an incompressible generalized Burgers’ fluid (GBF) in an annular pipe. We discussed in this problem the flow induced by an impulsive pressure gradient and compare the results with flow due to a constant pressure gradient. Analytic solutions for velocity is earned by using discrete Laplace transform (DLT) of the sequential fractional derivatives (FD) and finite Hankel transform (FHT). The influences of different parameters are analyzed on a velocity distribution characteristics and a comparison between two cases is also presented, and discussed in details. Eventually, the figures are plotted to exhibit these effects.

View Publication
Publication Date
Wed Mar 18 2020
Journal Name
Baghdad Science Journal
Solving Linear Volterra – Fredholm Integral Equation of the Second Type Using Linear Programming Method
...Show More Authors

In this paper, a new technique is offered for solving three types of linear integral equations of the 2nd kind including Volterra-Fredholm integral equations (LVFIE) (as a general case), Volterra integral equations (LVIE) and Fredholm integral equations (LFIE) (as special cases). The new technique depends on approximating the solution to a polynomial of degree  and therefore reducing the problem to a linear programming problem(LPP), which will be solved to find the approximate solution of LVFIE. Moreover, quadrature methods including trapezoidal rule (TR), Simpson 1/3 rule (SR), Boole rule (BR), and Romberg integration formula (RI) are used to approximate the integrals that exist in LVFIE. Also, a comparison between those methods i

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Mar 18 2020
Journal Name
Baghdad Science Journal
Solving Linear Volterra – Fredholm Integral Equation of the Second Type Using Linear Programming Method
...Show More Authors

In this paper, a new technique is offered for solving three types of linear integral equations of the 2nd kind including Volterra-Fredholm integral equations (LVFIE) (as a general case), Volterra integral equations (LVIE) and Fredholm integral equations (LFIE) (as special cases). The new technique depends on approximating the solution to a polynomial of degree  and therefore reducing the problem to a linear programming problem(LPP), which will be solved to find the approximate solution of LVFIE. Moreover, quadrature methods including trapezoidal rule (TR), Simpson 1/3 rule (SR), Boole rule (BR), and Romberg integration formula (RI) are used to approximate the integrals that exist in LVFIE. Also, a comparison between those

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Thu Dec 29 2016
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Explicit Finite Difference Approximation for the TwoDimensional Fractional Dispersion Equation
...Show More Authors

  In this paper, we introduce and discuss an algorithm for the numerical solution of two- dimensional fractional dispersion equation.  The algorithm for the numerical solution of this equation is based on explicit finite difference approximation. Consistency, conditional stability, and convergence of this numerical method are described. Finally, numerical example is presented to show the dispersion behavior according to the order of the fractional derivative and we demonstrate that our explicit finite difference approximation is a computationally efficient method for solving two-dimensional fractional dispersion equation

View Publication Preview PDF
Publication Date
Tue May 01 2018
Journal Name
Journal Of Physics: Conference Series
Strong Convergence of Iteration Processes for Infinite Family of General Extended Mappings
...Show More Authors

View Publication
Scopus (9)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Sun Jul 01 2018
Journal Name
Computers & Mathematics With Applications
Analytical and numerical solutions for the nonlinear Burgers and advection–diffusion equations by using a semi-analytical iterative method
...Show More Authors

View Publication
Crossref (20)
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
Solving multicollinearity problem of gross domestic product using ridge regression method
...Show More Authors

This study is dedicated to solving multicollinearity problem for the general linear model by using Ridge regression method. The basic formulation of this method and suggested forms for Ridge parameter is applied to the Gross Domestic Product data in Iraq. This data has normal distribution. The best linear regression model is obtained after solving multicollinearity problem with the suggesting of 10 k value.

Scopus (4)
Scopus
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
On The Convergence Speediness of K * and D-Iterations
...Show More Authors
Abstract<p>In this article, we introduced a new concept of mappings called δZA - Quasi contractive mapping and we study the K*- iteration process for approximation of fixed points, and we proved that this iteration process is faster than the existing leading iteration processes like Noor iteration process, CR -iteration process, SP and Karahan Two- step iteration process for 𝛿𝒵𝒜 − quasi contraction mappings. We supported our analytic proof by a numerical example.</p>
View Publication
Scopus (4)
Crossref (4)
Scopus Crossref