In this paper ,the problem of point estimation for the two parameters of logistic distribution has been investigated using simulation technique. The rank sampling set estimator method which is one of the Non_Baysian procedure and Lindley approximation estimator method which is one of the Baysian method were used to estimate the parameters of logistic distribution. Comparing between these two mentioned methods by employing mean square error measure and mean absolute percentage error measure .At last simulation technique used to generate many number of samples sizes to compare between these methods.
The current paper proposes a new estimator for the linear regression model parameters under Big Data circumstances. From the diversity of Big Data variables comes many challenges that can be interesting to the researchers who try their best to find new and novel methods to estimate the parameters of linear regression model. Data has been collected by Central Statistical Organization IRAQ, and the child labor in Iraq has been chosen as data. Child labor is the most vital phenomena that both society and education are suffering from and it affects the future of our next generation. Two methods have been selected to estimate the parameter
... Show MoreAbstract
The research examined with the importance banking merger to address the situation of Troubled banks in Iraq, Through The use of Logistic Regression Model. . The study attempted to present a conceptual aspect of banking merger and logistic regression, as well as the applied aspect which includes a sample consisting of six private Iraqi banks, and the hypothesis of the study is that the promotion of mergers among banks has positive impacts on improving the efficiency of performance of troubled banks, which contributes to the increase of banking services, raise of their financial indicators and the high liquidity and profits of the new banking entity as it is a way to overcome the prevailing banking crises.
... Show MoreIn this paper, the exact solutions of the Schlömilch’s integral equation and its linear and non-linear generalized formulas with application are solved by using two efficient iterative methods. The Schlömilch’s integral equations have many applications in atmospheric, terrestrial physics and ionospheric problems. They describe the density profile of electrons from the ionospheric for awry occurrence of the quasi-transverse approximations. The paper aims to discuss these issues.
First, the authors apply a regularization meth
A field experiment was conducted at the field of the Dept. of Field Crop Sci. / College of Agriculture / University of Baghdad . The objective was to determine the values of relative constant of three – way and double crosses of maize . Ten inbreds were used and crossed during spring and fall seasons of 2009 to produce three - way and double crosses , and ten hybrids were taken from each group . The ten hybrids were grown and selfed during spring 2010 to produce 2 seed . Three way and double crosses were sown with their parents and 2 seed during fall 2010 in RCBD with four replicates . Leaf area , total dry matter , row/ear , grain/ear , grain weight and grain weight/plant of hybrids , parents and 2 plants were taken . Results showed that
... Show MoreMixed-effects conditional logistic regression is evidently more effective in the study of qualitative differences in longitudinal pollution data as well as their implications on heterogeneous subgroups. This study seeks that conditional logistic regression is a robust evaluation method for environmental studies, thru the analysis of environment pollution as a function of oil production and environmental factors. Consequently, it has been established theoretically that the primary objective of model selection in this research is to identify the candidate model that is optimal for the conditional design. The candidate model should achieve generalizability, goodness-of-fit, parsimony and establish equilibrium between bias and variab
... Show MoreABSTRUCT
In This Paper, some semi- parametric spatial models were estimated, these models are, the semi – parametric spatial error model (SPSEM), which suffer from the problem of spatial errors dependence, and the semi – parametric spatial auto regressive model (SPSAR). Where the method of maximum likelihood was used in estimating the parameter of spatial error ( λ ) in the model (SPSEM), estimated the parameter of spatial dependence ( ρ ) in the model ( SPSAR ), and using the non-parametric method in estimating the smoothing function m(x) for these two models, these non-parametric methods are; the local linear estimator (LLE) which require finding the smoo
... Show MoreThere are many aims of this book: The first aim is to develop a model equation that describes the spread of contamination through soils which can be used to determine the rate of environmental contamination by estimate the concentration of heavy metals (HMs) in soil. The developed model equation can be considered as a good representation for a problem of environmental contamination. The second aim of this work is to design two feed forward neural networks (FFNN) as an alternative accurate technique to determine the rate of environmental contamination which can be used to solve the model equation. The first network is to simulate the soil parameters which can be used as input data in the second suggested network, while the second network sim
... Show MoreAbstract:
The distribution or retention of profits is the third decision among financial management decisions in terms of priority, whether at the level of theory or practice, as the issue of distribution or retention is multi-party in terms of influence and impact, as determining the optimal percentage for each component is still the subject of intellectual debate because these decisions are linked to the future of the organization and several considerations, The research focus on the nature of the policies followed by the Iraqi banking sector As the sample chosen by the intentional sampling method was represented by the Commercial Bank of
... Show MoreIn the lifetime process in some systems, most data cannot belong to one single population. In fact, it can represent several subpopulations. In such a case, the known distribution cannot be used to model data. Instead, a mixture of distribution is used to modulate the data and classify them into several subgroups. The mixture of Rayleigh distribution is best to be used with the lifetime process. This paper aims to infer model parameters by the expectation-maximization (EM) algorithm through the maximum likelihood function. The technique is applied to simulated data by following several scenarios. The accuracy of estimation has been examined by the average mean square error (AMSE) and the average classification success rate (ACSR). T
... Show More