In this paper, the construction of Hermite wavelets functions and their operational matrix of integration is presented. The Hermite wavelets method is applied to solve nth order Volterra integro diferential equations (VIDE) by expanding the unknown functions, as series in terms of Hermite wavelets with unknown coefficients. Finally, two examples are given
The study aims at investigating the quality of internal auditing and its impact on nature, timing, and procedures of external audit, based on international auditing standards, in particular ISA (610). The standard ISA (610) requires the external auditors to assess independence, the scope of internal audit unit, competence, and due professional care of internal auditors as indicators that reflect the quality of internal audit performance before deciding to rely on internal auditors.
The sample of this study consisted of external auditors in Iraqi Solidary Companies for Auditing. A questionnaire was distributed to them via e-mail
... Show MoreThe research seeks to identify the impact of fraud detection skills in the settlement of compensatory claims for the fire and accident insurance portfolio and the reflection of these skills in preventing and reducing the payment of undue compensation to some who seek profit and enrichment at the expense of the insurance contract. And compensatory claims in the portfolio of fire and accident insurance in the two research companies, which show the effect and positive return of the detection skills and settlement of the compensation on the amount of actual compensation against the claims inflated by some of the insured, The research sample consisted of (70) respondents from a community size (85) individuals between the director and assistan
... Show MoreAn image retrieval system is a computer system for browsing, looking and recovering pictures from a huge database of advanced pictures. The objective of Content-Based Image Retrieval (CBIR) methods is essentially to extract, from large (image) databases, a specified number of images similar in visual and semantic content to a so-called query image. The researchers were developing a new mechanism to retrieval systems which is mainly based on two procedures. The first procedure relies on extract the statistical feature of both original, traditional image by using the histogram and statistical characteristics (mean, standard deviation). The second procedure relies on the T-
... Show MoreMultiplicative inverse in GF (2 m ) is a complex step in some important application such as Elliptic Curve Cryptography (ECC) and other applications. It operates by multiplying and squaring operation depending on the number of bits (m) in the field GF (2 m ). In this paper, a fast method is suggested to find inversion in GF (2 m ) using FPGA by reducing the number of multiplication operations in the Fermat's Theorem and transferring the squaring into a fast method to find exponentiation to (2 k ). In the proposed algorithm, the multiplicative inverse in GF(2 m ) is achieved by number of multiplications depending on log 2 (m) and each exponentiation is operates in a single clock cycle by generating a reduction matrix for high power of two ex
... Show MoreThe study aimed to evaluate injuries and economic losses which caused by rose beetle Maladerainsanabilis (Brenske) on ornamental and fruit plants as introduced insect in Iraq during 2015 and determine infested host plants in addition to evaluate efficacy of pathogenic fungi Metarhiziumanisopiliae (1x10⁹ spore/ ml) and Beauvariabassiana (1x10⁸spore/ ml) in mortality of insect larvae in laboratory and field.The results showed that the insect was polyphagous infested many host plants (20 host plant)Which caused degradation and dead the plants through adult feeding on leaves and flower but large injury caused by larvae feeding on root plants which caused obligate dead to infested plant, the percentage mortality of rose plants 68.6%, pear
... Show MoreStatistical learning theory serves as the foundational bedrock of Machine learning (ML), which in turn represents the backbone of artificial intelligence, ushering in innovative solutions for real-world challenges. Its origins can be linked to the point where statistics and the field of computing meet, evolving into a distinct scientific discipline. Machine learning can be distinguished by its fundamental branches, encompassing supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning. Within this tapestry, supervised learning takes center stage, divided in two fundamental forms: classification and regression. Regression is tailored for continuous outcomes, while classification specializes in c
... Show More