Hollow core photonic bandgap fibers provide a new geometry for the realization and enhancement of many nonlinear optical effects. Such fibers offer novel guidance and dispersion properties that provide an advantage over conventional fibers for various applications. Dispersion, which expresses the variation with wavelength of the guided-mode group velocity, is one of the most important properties of optical fibers. Photonic crystal fibers (PCFs) offer much larger flexibility than conventional fibers with respect to tailoring of the dispersion curve. This is partly due to the large refractive-index contrast available in the silica/air microstructures, and partly due to the possibility of making complex refractive-index structure over the fiber cross section. In this paper the fundamental physical mechanism has been discussed determining the dispersion properties of PCFs, and the dispersion in a gas filled hollow core photonic crystal fiber has been calculated. We calculate the dispersion of air filled hollow core photonic crystal fiber, also calculate the dispersion of N2 gas filled hollow core photonic crystal fiber and finally we calculate the dispersion of He gas filled hollow core photonic crystal fiber.
Objective This study evaluated the effects of adding titanium oxide (TiO2) nanofillers on the tear strength, tensile strength, elongation percentage, and hardness of room-temperature-vulcanized (RTV) VST50F and high-temperature-vulcanized (HTV) Cosmesil M511 maxillofacial silicone elastomers. Methods Two types of maxillofacial elastomers, VST50F RTV and Cosmesil M511 HTV, were used. Nano-TiO2 powder was applied as a nanofiller. A total of 120 specimens were fabricated, 60 each of VST50F and Cosmesil M511. The specimens of each type of elastomer were divided into three equal groups on which tests were conducted for tear strength, tensile strength, and hardness i.e., 20 specimens were used for each test. Each group of 20 specimens was further
... Show MoreIn this study, cadmium oxide (CdO) was deposited on glass bases by thermal chemical spraying technique at three concentrations (0.05, 0.1, 0.15) M and then was irradiated by CO2 laser with 10.6 μm wave length and 1W power. The results of the atomic force microscope AFM test showed that the surfaces of these CdO thin films were homogenous and that the laser irradiated effect resulted in decreasing the roughness of the surface as well as the heights of the granular peaks, indicating a greater uniformity and homogeneity of the surfaces. The optical properties were studied to determine laser effect. The results of optical tests of these thin films showed that the photoluminescence spectra and absorption s
... Show MoreShear wave velocity is an important feature in the seismic exploration that could be utilized in reservoir development strategy and characterization. Its vital applications in petrophysics, seismic, and geomechanics to predict rock elastic and inelastic properties are essential elements of good stability and fracturing orientation, identification of matrix mineral and gas-bearing formations. However, the shear wave velocity that is usually obtained from core analysis which is an expensive and time-consuming process and dipole sonic imager tool is not commonly available in all wells. In this study, a statistical method is presented to predict shear wave velocity from wireline log data. The model concentrated to predict shear wave velocity fr
... Show MoreIodine-doped polythiophene thin films are prepared by aerosol assisted plasma jet polymerization at atmospheric pressure and room temperature. The doping of iodine was carried out in situ by employing iodine crystals in thiophene monomer by weight mixing ratios of 1%, 3%, 5% and 7%. The chemical composition analyses of pure and iodine-doped and heat-treated polythiophene thin films are carried out by FTIR spectroscopy studies. The optical band gaps of the films are evaluated from absorption spectrum studies. Direct transition energy gaps are determined from Tauc plots. The structural changes of polythiophene upon doping and the reduction of optical band gap are explained on the basis of the results obtained from FTIR spectroscopy, UV–V
... Show MoreIn this work, excess properties (eg excess molar volume (VE), excess viscosity (ȠE), excess Gibbs free energy of activation of viscos flow (ΔG* E) and molar refraction changes (ΔnD) of binary solvent mixtures of tetrahydrofurfuryl alcohol (THFA) with aromatic hydrocarbons (benzene, toluene and p-xylene) have been calculated. This was achieved by determining the physical properties including density ρ, viscosity Ƞ and refraction index nD of liquid mixtures at 298.15 K. Results of the excess parameters and deviation functions for the binary solvent mixtures at 298.15 K have been discussed by molecular interactions that occur in these mixtures. Generally, parameters showed negative values and have been found to fit well to Redlich-Kister
... Show MoreThe compounding of polyvinyl chloride (PVC) with two types of fillers and some additives were studied for the manufacturing of acid resistant tile. Various concentrations of two types of fillers namely; calcium carbonate and recycled glass powder were used along with different additives generally categorized as plasticizers, stabilizers, and lubricants were mixed in the standard concentration unit parts per hundred resins (phr) with the PVC as base polymer. The effects of filler materials on acid resistant towered different acids like sulphuric, nitric and hydrochloric at different concentration were studied. Samples which passed the test were further checked for dielectric strength and mechanical properties. It was found that the recycl
... Show MoreIn this paper, the effect of sulfur substitution by arsenic on the structural, optical properties of thin films of the trivalent chalcogenide Se66S44-xAsx at different concentrations (where x = 0, 8, 16, and 24 at %) was studied. Thin films with a thickness of (300±10 nm) were prepared using thermal evaporation of bulk samples. Structural examinations were performed using XRD and AFM techniques. All the studied film samples were amorphous in structure and the intensity of the crystalline parts was high in the range of 10-40. Also, in Atomic Force Microscopy (AFM). It was found that increasing the concentration of arsenic affects the structural parameters such as surface roughness, particle density, and average grain size. As the ar
... Show MoreMaintaining the quality of apricot fruits during storage is not an easy task due to the changes in their physical and chemical properties, so it is necessary to use less expensive, easy to apply, environmentally friendly, and safer preservatives to maintain the nutritional value of apricot. The damage to some fruits during storage can be a source of infection, which leads to the damage of healthy fruits more quickly, which requires building an intelligent model to detect damaged fruits. The aim of the research is to study the effect of immersing apricots in lemon juice once and sugar-water solution again on the quality properties of apricots, including sweetness, color, hardness, and water content. On the other hand, the YOLOv7 algorithm wa
... Show MoreThe refractive indices, nD densities 𝜌, and viscosities of binary mixtures of sulfolane + n -butanol + sec- butanol + iso- butanol + tert – butanol + n-propanol and iso- propanol were measured at 298.15K. Form experimental data, excess molar volum VE , excess molar refractivity ∆nD, excess molar viscosity E and excess molar Gibbs free energy of activation of viscous flow G *E were calculated. From n-propanol – sulfolane and iso- propanol sulfolane mixtures showed negative ∆nD, n-butanol – sulfolane, sec-butanal – sulfolane, iso-butanol – sulfolane and tert- butanol sulfolane , nD was positive over the whole mole fraction rang , while VE , E and G *E show a negative deviation. The
... Show More