Preferred Language
Articles
/
bsj-2014
Dispersion in a Gas Filled Hollow Core Photonic Crystal Fiber
...Show More Authors

Hollow core photonic bandgap fibers provide a new geometry for the realization and enhancement of many nonlinear optical effects. Such fibers offer novel guidance and dispersion properties that provide an advantage over conventional fibers for various applications. Dispersion, which expresses the variation with wavelength of the guided-mode group velocity, is one of the most important properties of optical fibers. Photonic crystal fibers (PCFs) offer much larger flexibility than conventional fibers with respect to tailoring of the dispersion curve. This is partly due to the large refractive-index contrast available in the silica/air microstructures, and partly due to the possibility of making complex refractive-index structure over the fiber cross section. In this paper the fundamental physical mechanism has been discussed determining the dispersion properties of PCFs, and the dispersion in a gas filled hollow core photonic crystal fiber has been calculated. We calculate the dispersion of air filled hollow core photonic crystal fiber, also calculate the dispersion of N2 gas filled hollow core photonic crystal fiber and finally we calculate the dispersion of He gas filled hollow core photonic crystal fiber.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Oct 01 2012
Journal Name
Iraqi Journal Of Physics
Influence of substrate temperature on structural and optical properties of SnO2 films
...Show More Authors

Tin Oxide (SnO2) films have been deposited by spray pyrolysis technique at different substrate temperatures. The effects of substrate temperature on the structural, optical and electrical properties of SnO2 films have been investigated. The XRD result shows a polycrystalline structure for SnO2 films at substrate temperature of 673K. The thickness of the deposited film was of the order of 200 nm measured by Toulansky method. The energy gap increases from 2.58eV to 3.59 eV when substrate temperature increases from 473K to 673K .Electrical conductivity is 4.8*10-7(.cm)-1 for sample deposited at 473K while it increases to 8.7*10-3 when the film is deposited at 673K

View Publication Preview PDF
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Improving Wear Properties of 392 Al Alloy Using Centrifugal Casting
...Show More Authors

The microstructure and wear properties of 392 Al alloy with different Mg contents were studied using centrifugal casting. All melted alloys were heated to 800 ºC and poured into the preheated centrifugal casting mold (200-250 ºC) at different mould rotational speeds (1500, 1900 and 2300 r.p.m).  It is clear from the results obtained that wear rate was dependent on the Mg content, applied load and mould rotational speed. Furthermore, wear test showed that the minimum wear rate was found in the inner layer of produced rings at mould rotational speed of 1900 r.p.m and Mg content of 5%.

 

View Publication Preview PDF
Publication Date
Sat Jan 12 2013
Journal Name
International Journal Of Advanced Research In Engineering And Technology (ijaret)
FABRICATION OF AGAL/SI SOLAR CELL
...Show More Authors

The structural, optical and photoelectrical properties of fabricated diffusion heterojunction (HJ) solar cell, from n-type c-Si wafer of [400] direction with Boron, has been studied. AgAl alloys was used because of its properties that affect as a good connection materials. TiO2 has been used as a reflecting layer to increase the absorption radiation. The HJ has direct allowed energy gap equal to 3.1 eV. The c-Si/B HJ solar cell yielded has an active area conversion efficiency of 16.4% with an open circuit voltage of (Voc) 0.592V, short circuit current (Isc) of 2.042mA, fill factor (F.F) of 0.682 and % =10.54.

Preview PDF
Publication Date
Sun Feb 10 2019
Journal Name
Iraqi Journal Of Physics
Study of the mechanical properties of Iron-Epoxy composite materials
...Show More Authors

Iron-Epoxy composite samples were prepared by added
different weight percentages (0, 5, 10, 15, and 20 wt %) from Iron
particles in the range of (30-40μm) as a particle size. The contents
were mixed carefully, and placed a circular dies with a diameter of
2.5 cm. Different mechanical tests (Shore D Hardness, Tensile
strength, and Impact strength ) were carried out for all samples. The
samples were immersed in water for ten weeks, and after two weeks
the samples were take-out and drying to conducting all mechanical
tests were repeated for all samples. The hardness values increased
when the Iron particle concentration increased while the Impact
strength is not affected by the increasing of Iron particles
c

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jan 08 2019
Journal Name
Iraqi Journal Of Physics
Effect of sputtering power on optical Properties of RF sputtering deposited Ti6Al4V Thin Films
...Show More Authors

Ti6Al4V thin film was prepared on glass substrate by RF
sputtering method. The effect of RF power on the optical properties
of the thin films has been investigated using UV-visible
Spectrophotometer. It's found that the absorbance and the extinction
coefficient (k) for deposited thin films increase with increasing
applied power, while another parameters such as dielectric constant
and refractive index decrease with increasing RF power.

View Publication Preview PDF
Crossref
Publication Date
Thu Nov 02 2023
Journal Name
Journal Of Engineering
An Overview of How the Petrophysical Properties of Rock Influenced After Being Exposed to Cryogenic Fluid
...Show More Authors

Exposure to cryogenic liquids can significantly impact the petrophysical properties of rock, affecting its density, porosity, permeability, and elastic properties. These effects can have important implications for various applications, including oil and gas production and carbon sequestration. Cryogenic liquid fracturing is a promising alternative to traditional hydraulic fracturing for exploiting unconventional oil and gas resources and geothermal energy. This technology offers several advantages over traditional hydraulic fracturing, including reduced water consumption, reduced formation damage, and a reduced risk of flow-back fluid contamination. In this study, an updated review of recent studies demonstrates how the

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Mon Feb 04 2019
Journal Name
Iraqi Journal Of Physics
The optical properties of (PVA+PVP) + PANI blends
...Show More Authors

Polyaniline polymer has been prepared by chemical oxidation
polymerization method in laboratory successfully. The PANI and
(PVA+PVP) as a polymer blends in different percentage (30%, 50%,
70%) from Polyaniline was prepared. The sample was studies as
optical properties by UV-vis spectrophotometer at (400-700) nm.
The result of optical energy gap was 2.23 eV for pure (PVA+ PVP)
and with additive was increasing with increasing PANI concentration
to become (2.49 for 30% to 2.52 for 70%) PANI. The goal of this
project is prepare triple blend polymer and study the effect when add
conductive polymer (Polyaniline) on the optical properties and
calculate optical constant as energy gap, refractive index, dielectric

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Mar 31 2017
Journal Name
Al-khwarizmi Engineering Journal
Mechanical Properties Investigation of Composite Material Under Different Parameters Variations
...Show More Authors

         The main objective of this research is to design and select a composite plate to be used in fabricating wing skins of light unman air vehicle (UAV). The mechanical properties, weight and cost are the basis criteria of this selection. The fiber volume fraction, fillers and type of fiber with three levels for each were considered to optimize the composite plate selection. Finite element method was used to investigate the stress distribution on the wing at cruise flight condition in addition to estimate the maximum stress. An experiments plan has been designed to get the data on the basis of Taguchi technique. The most effective parameters at the process to be find out by employing L9

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Dec 01 2010
Journal Name
Iraqi Journal Of Physics
Optical properties of Ternary Se80-xTe20Gex Thin Films
...Show More Authors

The present paper deals with prepared of ternary Se80-xTe20Gex system alloys and thin films. The XRD analysis improved that the amorphous structure of alloys and thin films for ternary Se80-xTe20Gex (at x=10and 20at.%Ge) which prepared by thermal evaporation techniques with thickness 250 nm. The optical energy gap measurements show that the optical energy gap decreases with increasing of (Ge) content from (1.7 to 1.47 eV)
It is found that the optical constants, such as refractive
index ,extinction coefficient, real and imaginary dielectric
constant are non systematic with increasing of Ge contents
and annealing temperatures

View Publication Preview PDF
Publication Date
Mon Nov 01 2010
Journal Name
Iraqi Journal Of Physics
The Effect of Germanium Content(x) on the Electrical Properties of (Gex S1-x) Thin Films
...Show More Authors

Thin films of GexS1-x were fabricated by thermal evaporating under vacuum of 10-5Toor on glass substrate. The effect of increasing of germanium content (x) in sulfide films on the electrical properties like d.c conductivity (σDC), concentration of charge carriers (nH) and the activation energy (Ea) and Hall effect were investigated. The measurements show that (Ea) increases with the increasing of germanium content from 0.1to0.2 while it get to reduces with further addition, while charge carrier density (nH) is found to decrease and increase respectively with germanium content. The results were explained in terms of creating and eliminating of states in the band gap

View Publication Preview PDF