The objective of this study is to estimate the effect of the hydro-ethanolic catechin extract toward blood glucose, lipid profile and liver functions in alloxan diabetic mice. 50 healthy mice (25-30 g) were divided into five groups of ten animals for each. Group A received normal saline as normal control group. To induce diabetes, alloxan (150 mg/kg), intraperitoneal (i.p.) single dose was injected to groups B, C, D and E. Group B represents diabetic control group. Groups C, D and E received ethanolic catechin extract (30 mg/kg and 40 mg/kg) for different periods of 1, 2 and 3 weeks as treated groups. Blood glucose, serum lipids [Total Cholesterol (TC), Triglycerides (TGs) and High Density Lipoproteins (HDL)], asparagine transaminase (AST), alanine transaminase (ALT) and alkaline phosphatase (ALP) were estimated after one, two and three weeks. Group B showed a significant increase in blood glucose, TC, TGs, AST, ALT and ALP as compared to group A. Groups C, D, and E showed a significant decrease in mentioned serum biochemical parameters in comparison to group B. In contrast, groups C, D and E showed significant increase in serum HDL as compared to B group. The results clearly revealed that ethanolic catechin extract possesses significant antihyperglycemic and antihyperlipidemic activities together with its ability to improve liver functions in alloxan diabetic mice.
Rate of penetration plays a vital role in field development process because the drilling operation is expensive and include the cost of equipment and materials used during the penetration of rock and efforts of the crew in order to complete the well without major problems. It’s important to finish the well as soon as possible to reduce the expenditures. So, knowing the rate of penetration in the area that is going to be drilled will help in speculation of the cost and that will lead to optimize drilling outgoings. In this research, an intelligent model was built using artificial intelligence to achieve this goal. The model was built using adaptive neuro fuzzy inference system to predict the rate of penetration in
... Show MoreSteel–concrete–steel (SCS) structural systems have economic and structural advantages over traditional reinforced concrete; thus, they have been widely used. The performance of concrete made from recycled rubber aggregate from scrap tires has been evaluated since the early 1990s. The use of rubberized concrete in structural construction remains necessary because of its high impact resistance, increases ductility, and produces a lightweight concrete; therefore, it adds such important properties to SCS members. In this research, the use of different concrete core materials in SCS was examined. Twelve SCS specimens were subjected to push-out monotonic loading for inspecting their mechanical performance. One specimen was constructed from co
... Show MoreThe current research aims at extracting the standard characteristics of the emotional balance of the university students according to the response theory. This was accomplished by following accredited scientific steps, to achieve this goal, the researcher followed scientific steps in the procedures of the analysis of the scale. She translated the scale from English to Arabic and then made a reverse translation. it was presented to a committee of experts in English to ensure and verify the validity of the paragraphs logically and prove the face validity of the scale, which consists of (30) paragraphs, it was presented to (6) experts who are specialists in the educational and psychological sciences and in the light of their observations ha
... Show MoreThe nanostructured MnO2 /carbon fiber (CF) composite electrode was prepared using the anodic electrodeposition process. The crystal structure and morphology of MnO2 particles were determined with X-ray diffraction and field-emission scanning electron microscopy. The electrosorptive properties of the prepared electrode were investigated in the removal of cadmium ions from aqueous solution, and the effect of pH, cell voltage, and ionic strength was optimized and modeled using the response surface methodology combined with Box–Behnken design. The results confirm that the optimum conditions to remove Cd(II) ions were: pH of 6.03, a voltage of 2.77 V, and NaCl concentration of 3 g/L. The experimental results showed a good fit for the Freundli
... Show MoreThe goal of this work is to check the presence of PNS (photon number splitting) attack in quantum cryptography system based on BB84 protocol, and to get a maximum secure key length as possible. This was achieved by randomly interleaving decoy states with mean photon numbers of 5.38, 1.588 and 0.48 between the signal states with mean photon numbers of 2.69, 0.794 and 0.24. The average length for a secure key obtained from our system discarding the cases with Eavesdropping was equal to 125 with 20 % decoy states and 82 with 50% decoy states for mean photon number of 0.794 for signal states and 1.588 for decoy states.
Eco-friendly concrete is produced using the waste of many industries. It reduces the fears concerning energy utilization, raw materials, and mass-produced cost of common concrete. Several stress-strain models documented in the literature can be utilized to estimate the ultimate strength of concrete components reinforced with fibers. Unfortunately, there is a lack of data on how non-metallic fibers, such as polypropylene (PP), affect the properties of concrete, especially eco-friendly concrete. This study presents a novel approach to modeling the stress-strain behavior of eco-friendly polypropylene fiber-reinforced concrete (PFRC) using meta-heuristic particle swarm optimization (PSO) employing 26 PFRC various mixtures. The cement was partia
... Show MoreDeep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for d
... Show More