The current study was designed to remove Lead, Copper and Zinc from industrial wastewater using Lettuce leaves (Lactuca sativa) within three forms (fresh, dried and powdered) under some environmental factors such as pH, temperature and contact time. Current data show that Lettuce leaves are capable of removing Lead, Copper and Zinc ions at significant capacity. Furthermore, the powder of Lettuce leaves had highest capability in removing all metal ions. The highest capacity was for Lead then Copper and finally Zinc. However, some examined factors were found to have significant impacts upon bioremoval capacity of studied ions, where best biosorption capacity was found at pH 4, at temperature 50º C and contact time of 1 hour.
This study examined the adsorption behavior of anionic dye (orange G) from aqueous solution onto the raw and activated a mixture of illite, kaolinite and chlorite clays from area of Zorbatiya (east of Iraq).The chemical treatment involved alkali and acid activation. The alkali activation obtained by treated the raw clay (RC) with 5M NaOH (ACSO) and the acid activation founded by treated it with 0.25M HCl (ACH) and 0.25M (ACS). The thermal treatment carried out by calcination the produce activated clay at 750oC for acid activation and 105oC for alkali activation. Batch
... Show MoreThis study focused on treatment of real wastewater rejected from leather industry in Al-Nahrawan city in Iraq by Electrocoagulation (EC) process followed by Reverse Osmosis (RO) process. The successive treatment was applied due to high concentration of Cr3+ ions (about 1600 ppm) rejected in wastewater of this industry and for applying EC with moderate power consumption and better results of produced water. In Electrocoagulation process (EC), the effect of NaCl concentration (1.5, 3 g/l), current density (C.D.) (15-25 mA/cm2), electrolysis time (1-2 h), and distance between electrodes (E.D.) (1-2 cm) were examined in a batch cell by implementing Taguchi experimental design. According to the results obtained from multiple regression and signa
... Show MoreThe present study is to investigate the possibility of using wastes in the form of scrap iron (ZVI) and/ or aluminum ZVAI for the detention and immobilization of the chromium ions in simulated wastewater. Different batch equilibrium parameters such as contact time (0-250) min, sorbent dose (2-8 g ZVI/100 mL and 0.2-1 g ZVAI/100 mL), initial pH (3-6), initial pollutant concentration of 50 mg/L, and speed of agitation (0-250) rpm were investigated. Maximum contaminant removal efficiency corresponding to (96 %) at 250 min contact time, 1g ZVAI/ 6g ZVI sorbent mass ratio, pH 5.5, pollutant concentration of 50 mg/L initially, and 250 rpm agitation speed were obtained.
The best isotherm model for the batch single Cr(III) uptake by ZVI
... Show MoreA Ligand (ECA) methyl 2-((1-cyano-2-ethoxy-2-oxoethyl)diazenyl)benzoate with metals of (Co2+, Ni2+, Cu2+) were prepared and characterization using H-NMR, atomic absorption spectroscopy, ultra violet (UV) visible, magnetic moments measurements, bioactivity, and Molar conductivity measurements in soluble ethanol. Complexes have been prepared using a general formula which was suggested as [M (ECA)2] Cl2, where M = (Cobalt(II), Nickel(II) and Copper(II), the geometry shape of the complexes is octahedral.
The inhibitory behavior of L-Cysteine (Cys) and its derivatives towards iron corrosion through density functional theory (DFT) was investigated. The current research study undertakes a rigorous evaluation of global as well as local reactivity descriptors of the Cys in protonated as well as neutral forms and the changes in reactivity after the combination of Cys into di- and tripeptides. The inhibitory effect of di- and tri-peptides increases since, in the molecular structure, the number of reaction centers increase. We computed the adsorption energies (Eads) and low energy complexes with most stability for the adsorption of small peptides and Cys amino acids onto the surfaces of Fe (1 1 1). We found that the adsorption of tri-peptides onto
... Show Moreوفقأ للدراسات السابقة تم تحضير ليكاند آزو جديد (ن-(3-اسيتايل-2-هيدروكسي-5-مثيل-فنيل)ن-(4-كاربوكسي-سايكلوهكسيل مثيل)-ملح الدايازونيوم) وبعد التحقق من الصيغة المقترحة وفق نتائج التحاليل وبعد استخدام الليكاند لتحضير سلسلة ن المعقدات باستخدام نسب مولية متساوية (1:1) من الليكاند وتفاعلها مع كل من املاح المنغنيز والكوبلت والنيكل والنحاس والخارصين وبعد التحقق وفق تقنيات التحاليل الطيفية والتشخيصية(الاشعة فوق البنف
... Show MoreThe objective of this study is to evaluate the bacterial count and heavy metal concentration of river water on fish micronuclei. Fish and water samples are carried out in 1 May to 1 June 2013 from Tigris River. A total of fifty three fish sample are studied. The bacteriological quality of water showed that the total viable count is ranged from 150×103 to 352×103 cfu/ml and fecal coliform counts was 1250 cell/100ml during the study period. All the metals (Cu, Hg, Pb, and Zn) are within the normal limit, but Cd was slightly elevated in river water samples. The appearance of micronuclei in red blood cells of all fish species is detect , by recording a larger number of it, in ( Abu Alsomere , Hishne , Bannini Kaber al fam & Karkoor
... Show MoreThis study concerns the removal of a trihydrate antibiotic (Amoxicillin) from synthetically contaminated water by adsorption on modified bentonite. The bentonite was modified using hexadecyl trimethyl ammonium bromide (HTAB), which turned it from a hydrophilic to a hydrophobic material. The effects of different parameters were studied in batch experiments. These parameters were contact time, solution pH, agitation speed, initial concentration (C0) of the contaminant, and adsorbent dosage. Maximum removal of amoxicillin (93 %) was achieved at contact time = 240 min, pH = 10, agitation speed = 200 rpm, initial concentration = 30 ppm, and adsorbent dosage = 3 g bentonite per 1L of pollutant solution. The characterization of the adsorbent, modi
... Show More