The current study was designed to remove Lead, Copper and Zinc from industrial wastewater using Lettuce leaves (Lactuca sativa) within three forms (fresh, dried and powdered) under some environmental factors such as pH, temperature and contact time. Current data show that Lettuce leaves are capable of removing Lead, Copper and Zinc ions at significant capacity. Furthermore, the powder of Lettuce leaves had highest capability in removing all metal ions. The highest capacity was for Lead then Copper and finally Zinc. However, some examined factors were found to have significant impacts upon bioremoval capacity of studied ions, where best biosorption capacity was found at pH 4, at temperature 50º C and contact time of 1 hour.
A field experiment was conducted in Al-Yusufiya district - Al-Mahmoudiya district, Baghdad province during the winter season 2021, to study improving the efficiency and management of water use and the productivity of lettuce under different irrigation systems. The Nested-Factorial Experiments design was used, where the main plots include the first factor, irrigation levels (I1) 50%, (I2) 75%, (I3) 100, (I4) 125%, (I5) 150% ETpan. After depleting 35% of the available water and in terms of climatic data from the American Evaporative Basin, Class A. Then the main factor is divided into three replicates, and the coefficients of the second factor are distributed randomly within each replicate, which includes the irrigation system: surface drip i
... Show MoreThis study uses an environmentally friendly and low-cost synthesis method to manufacture zinc oxide nanoparticles (ZnO NPs) by using zinc sulfate. Eucalyptus leaf extract is an effective chelating and capping agent for synthesizing ZnO NPs. The structure, morphology, thermal behavior, chemical composition, and optical properties of ZnO nanoparticles were studied utilizing FT-IR, FE-SEM, EDAX, AFM, and Zeta potential analysis. The FE-SEM pictures confirmed that the ZnO NPs with a size range of (22-37) nm were crystalline and spherical. Two methods were used to prepare ZnO NPs. The first method involved calcining the resulting ZnO NPs, while the second method did not. The prepared ZnO NPs were used as adsorbents for removing acid black 210
... Show MoreShaky Baghdad heavy crude oil 22 API is processed by distillation and solvent extraction. The purpose of distillation is to separate the light distillates (light fractions) which represent 35% of heavy crude oil, and to obtain the reduced crude oil. The heavy residue (9 API) is extracted with Iraqi light naphtha to get the deasphaltened oil (DAO), the extraction carried out with temperature range of 20-75 oC, solvent to oil ratio 5-15:1(ml:g) and a mixing time of 15 minutes. In general, results show that API of DAO increased twice the API of reduced crude oil while sulfur and metals content decreased 20% and 50% respectively. Deasphaltened oil produced from various operating conditions blended with the
... Show MoreThe heavy metals mainly include Pb, Hg, Cd, Cr, Cu, Zn, Mn, Ni, Ag, etc. The heavy metals,Pb,Cu,Zn are considered most toxic to humans, fishes and environment. highly concentrations of heavy metals are harmful They destabilize ecosystems because of their bioaccumulation in organisms, and toxic effects on biota and even death in most living beings. All heavy metals, in spite some of them are essential micronutrients, have their toxic effects on living organisms via metabolic interference and mutagenesis. The bioaccumulation of toxic metals can happen in the body and food chain. So, the toxic metals generally exhibit chronic toxicity. The heavy metals like Pb has significant toxic effec
Iron slag is a byproduct generated in huge quantities from recycled remnants of iron and steel factories; therefore, the possibility of using this waste in the removal of benzaldehyde from contaminated water offers an excellent topic in sustainability field. Results reveal that the removal efficiency was equal to 85% for the interaction of slag and water contaminated with benzaldehyde at the best operational conditions of 0.3 g/100 mL, 6, 180 min, and 250 rpm for the sorbent dosage, initial pH, agitation time, and speed, respectively with 300 mg/L initial concentration. The maximum uptake capacity of iron slag was 118.25 mg/g which was calculated by the Langmuir model. Physical sorption may be the major mechanism for the removal of
... Show More