This study involved the effect of anew nickel (II) complexs with formla [NiL2(H2O)2].2.5ETOH where L=Bis[5-(p-nitrophenyL)-4-phenyL-1,2,4-traizole-3-dithocarbamato hydrazide] diaqua. nickel(II). Ethanol(2.5).and anti-cancer drug cyclophosphamide on specific actifity of two Liver enzymes (GOT,GPT) in the (Liver,kidney) tissues and on the creatinine Level in the kidney byUtilizing an invivosystem in femalmice.The result showed that inhibition in the activity of GPT and GOT enzymes in theLiver and in both nickel (II) complex and cyclophosphamide drug (CP) . mice weretreated with three doses (90,180,320) µg/mouse for three days for each group.The Liver show's the highest rate of GPT inhibition was about 97.43% at180µg/mouse regarding the kidney the inhibition rate was about 98.63% at 180µg/mouse .The maximum inhibition of GOT enzame in the Liver was about 77. 48% ataconcentration 180µg/mouse and the inhbition rate of GOT enzyme in the kidney was about 97.87% at aconcentration 320µg/mouse.The result showed the effect of nickel (II) complex on the creatinine Level in the kidney ,The maximum activation was about 99.45% at 320µg/mouse.
Erratum for Organic acid concentration thresholds for ageing of carbonate minerals: Implications for CO2 trapping/storage.
The research deals with an evolutionary-based mutation with functional annotation to identify protein complexes within PPI networks. An important field of research in computational biology is the difficult and fundamental challenge of revealing complexes in protein interaction networks. The complex detection models that have been developed to tackle challenges are mostly dependent on topological properties and rarely use the biological properties of PPI networks. This research aims to push the evolutionary algorithm to its maximum by employing gene ontology (GO) to communicate across proteins based on biological information similarity for direct genes. The outcomes show that the suggested method can be utilized to improve the
... Show MoreThe reaction oisolated and characterized by elemental analysis (C,H,N) , 1H-NMR, mass spectra and Fourier transform (Ft-IR). The reaction of the (L-AZD) with: [VO(II), Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)], has been investigated and was isolated as tri nuclear cluster and characterized by: Ft-IR, U. v- Visible, electrical conductivity, magnetic susceptibilities at 25 Co, atomic absorption and molar ratio. Spectroscopic evidence showed that the binding of metal ions were through azide and carbonyl moieties resulting in a six- coordinating metal ions in [Cr (III), Mn (II), Co (II) and Ni (II)]. The Vo (II), Cu (II), Zn (II), Cd (II) and Hg (II) were coordinated through azide group only forming square pyramidal
... Show More