Preferred Language
Articles
/
bsj-1549
On Solving Hyperbolic Trajectory Using New Predictor-Corrector Quadrature Algorithms

In this Paper, we proposed two new predictor corrector methods for solving Kepler's equation in hyperbolic case using quadrature formula which plays an important and significant rule in the evaluation of the integrals. The two procedures are developed that, in two or three iterations, solve the hyperbolic orbit equation in a very efficient manner, and to an accuracy that proves to be always better than 10-15. The solution is examined with and with grid size , using the first guesses hyperbolic eccentric anomaly is and , where is the eccentricity and is the hyperbolic mean anomaly.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Dec 07 2014
Journal Name
Baghdad Science Journal
The Modified Quadrature Method for solving Volterra Linear Integral Equations

In this paper the modified trapezoidal rule is presented for solving Volterra linear Integral Equations (V.I.E) of the second kind and we noticed that this procedure is effective in solving the equations. Two examples are given with their comparison tables to answer the validity of the procedure.

Crossref
View Publication Preview PDF
Publication Date
Tue Apr 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Galerkin-Implicit Methods for Solving Nonlinear Hyperbolic Boundary Value Problem

This paper is concerned with finding the approximation solution (APPS) of a certain type of nonlinear hyperbolic boundary value problem (NOLHYBVP).  The given BVP is written in its discrete (DI) weak form (WEF), and is proved that  it has a unique APPS, which is obtained via the mixed Galerkin finite element method (GFE) with implicit method (MGFEIM) that reduces the problem to solve the Galerkin nonlinear algebraic system  (GNAS).  In this part, the predictor and the corrector technique (PT and CT) are proved convergent and are used to transform the obtained GNAS to  linear (GLAS ), then the GLAS is solved using the Cholesky method (ChMe). The stability and the convergence of the method are studied. The results

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu Jul 25 2019
Journal Name
Advances In Intelligent Systems And Computing
Scopus (12)
Crossref (8)
Scopus Crossref
View Publication
Publication Date
Tue Nov 30 2021
Journal Name
Iraqi Journal Of Science
The Galerkin-Implicit Method for Solving Nonlinear Variable Coefficients Hyperbolic Boundary Value Problem

This paper has the interest of finding the approximate solution (APPS) of a nonlinear variable coefficients hyperbolic boundary value problem (NOLVCHBVP).  The given boundary value problem is written in its discrete weak form (WEFM) and proved  have a unique solution, which is obtained via the mixed Galerkin finite element with implicit method that reduces the problem to solve the Galerkin nonlinear algebraic system  (GNAS). In this part, the predictor and the corrector techniques (PT and CT, respectively) are proved at first convergence and then are used to transform  the obtained GNAS to a linear GLAS . Then the GLAS is solved using the Cholesky method (ChMe). The stability and the convergence of the method are stud

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu May 18 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Finite Difference Method for Solving Fractional Hyperbolic Partial Differential Equations

    In this paper, the finite difference method is used to solve fractional hyperbolic partial differential equations, by modifying the associated explicit and implicit difference methods used to solve fractional  partial differential equation. A comparison with the exact solution is presented and the results are given in tabulated form in order to give a good comparison with the exact solution

View Publication Preview PDF
Publication Date
Fri Jul 19 2019
Journal Name
Iraqi Journal Of Science
A Comparative Study on Meta-Heuristic Algorithms For Solving the RNP Problem

The continuous increases in the size of current telecommunication infrastructures have led to the many challenges that existing algorithms face in underlying optimization. The unrealistic assumptions and low efficiency of the traditional algorithms make them unable to solve large real-life problems at reasonable times.
The use of approximate optimization techniques, such as adaptive metaheuristic algorithms, has become more prevalent in a diverse research area. In this paper, we proposed the use of a self-adaptive differential evolution (jDE) algorithm to solve the radio network planning (RNP) problem in the context of the upcoming generation 5G. The experimental results prove the jDE with best vecto

... Show More
Scopus (2)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed May 03 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Repeated Corrected Simpson's 3/8 Quadrature Method for Solving Fredholm Linear Integral Equations of the Second Kind

  In this paper, we use the repeated corrected Simpson's 3/8 quadrature method for obtaining the numerical solutions of Fredholm linear integral equations of the second kind. This method is more accurately than the repeated corrected Trapezoidal method and the repeated Simpson's 3/8 method. To illustrate the accuracy of this method, we give a numerical example

View Publication Preview PDF
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
A Comparative Study of Various Intelligent Algorithms Based Nonlinear PID Neural Trajectory Tracking Controller for the Differential Wheeled Mobile Robot Model

This paper presents a comparative study of two learning algorithms for the nonlinear PID neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to tune the nonlinear PID neural controller's parameters to find the best velocities control actions of the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; thi

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Mon Mar 08 2021
Journal Name
Baghdad Science Journal
B-splines Algorithms for Solving Fredholm Linear Integro-Differential Equations

Algorithms using the second order of B -splines [B (x)] and the third order of B -splines [B,3(x)] are derived to solve 1' , 2nd and 3rd linear Fredholm integro-differential equations (F1DEs). These new procedures have all the useful properties of B -spline function and can be used comparatively greater computational ease and efficiency.The results of these algorithms are compared with the cubic spline function.Two numerical examples are given for conciliated the results of this method.

View Publication Preview PDF
Publication Date
Mon Dec 10 2018
Journal Name
Day 1 Mon, December 10, 2018
Wellbore Trajectory Optimization Using Rate of Penetration and Wellbore Stability Analysis

Drilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.

In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation

... Show More
View Publication