Palm vein recognition is a one of the most efficient biometric technologies, each individual can be identified through its veins unique characteristics, palm vein acquisition techniques is either contact based or contactless based, as the individual's hand contact or not the peg of the palm imaging device, the needs a contactless palm vein system in modern applications rise tow problems, the pose variations (rotation, scaling and translation transformations) since the imaging device cannot aligned correctly with the surface of the palm, and a delay of matching process especially for large systems, trying to solve these problems. This paper proposed a pose invariant identification system for contactless palm vein which include three main steps, at first data augmentation is done by making multiple copies of the input image then perform out-of-plane rotation on them around all the X,Y and Z axes. Then a new fast extract Region of Interest (ROI) algorithm is proposed for cropping palm region. Finally, features are extracted and classified by specific structure of Convolutional Neural Network (CNN). The system is tested on two public multispectral palm vein databases (PolyU and CASIA); furthermore, synthetic datasets are derived from these mentioned databases, to simulate the hand out-of-plane rotation in random angels within range from -20° to +20° degrees. To study several situations of pose invariant, twelve experiments are performed on all datasets, highest accuracy achieved is 99.73% ∓ 0.27 on PolyU datasets and 98 % ∓ 1 on CASIA datasets, with very fast identification process, about 0.01 second for identifying an individual, which proves system efficiency in contactless palm vein problems.
In recent days, the escalating need to seamlessly transfer data traffic without discontinuities across the Internet network has exerted immense pressure on the capacity of these networks. Consequently, this surge in demand has resulted in the disruption of traffic flow continuity. Despite the emergence of intelligent networking technologies such as software-defined networking, network cloudification, and network function virtualization, they still need to improve their performance. Our proposal provides a novel solution to tackle traffic flow continuity by controlling the selected packet header bits (Differentiated Services Code Point (DSCP)) that govern the traffic flow priority. By setting the DSCP bits, we can determine the appropriate p
... Show MoreThis thesis aims to show the effects of the development of the traditional manual system of the tax accounting process to the electronic system by the activation of the tax identification numbers (TINs) mechanism. The impact of this development is facilitating the tax accounting process, tax fraudand thus increasing the tax outcome.To prove the research hypothesis, an electronic system was designed based on income tax report, estimation note of individuals, in additional to using Adobe Dreamweaver application to write PHP, HTML, Javascript, and CSS web languages to implement the proposed system. The research reached a set of conclusions, the most important of which is; not enough the communication methods between the Genera
... Show MoreThe operation and management of water resources projects have direct and significant effects on the optimum use of water. Artificial intelligence techniques are a new tool used to help in making optimized decisions, based on knowledge bases in the planning, implementation, operation and management of projects as well as controlling flowing water quantities to prevent flooding and storage of excess water and use it during drought.
In this research, an Expert System was designed for operating and managing the system of AthTharthar Lake (ESSTAR). It was applied for all expected conditions of flow, including the cases of drought, normal flow, and during floods. Moreover, the cases of hypothetical op
... Show MoreIn this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking de
... Show MoreDust and bird residue are problems impeding the operation of solar street lighting systems, especially in semi-desert areas, such as Iraq. The system in this paper was designed and developed locally using simple and inexpensive materials. The system runs automatically. It Connects to solar panels used in solar street lighting, and gets the required electricity from the same solar system. Solar panels are washed with dripping water in less than half a minute by this system. The cleaning period can also be controlled. It can also control, sensing the amount of dust the system operates. The impact of different types of falling dust on panels has also been studied. This was collected from different winds and studied their impact o
... Show MoreCapparis spinosa is one of the oldest genera grown in Iraqi land with worldwide traditional medicinal uses beside the culinary uses. These uses were own to the presence of many phytochemical including flavonoids, polyphenols. Among the reported polyphenolic acids are caffeic, chlorogenic and ferulic acids with well-known powerful antioxidant properties. The present work aimed to identify the presence of these polyphenolic acids in Iraqi caper naturally gown in the rural area of middle Iraq following standard chromatographic procedures. Aerial parts of the plant (buds, berries and leaves) were extracted with hydroalcoholic solvent by maceration method. Thin layer chromatographic techniques and HPLC analysis were performed to iden
... Show MoreEvolutionary·co.nipimit'iQo is a· c'!a s of glbbal ·searb techniq
based on the lei.lffi:ing process ,of g po_pl)'latiog-·of pote.n:tiaf solutions to
a ven probl_e-ID'. thahas .been succe_ssfull'y applied 19 v ety of
prQblern, lll thls paper a riew approach to. design lie_ ural ne'twQj:ks
based oh ev.ohltipnary -computa.tio.rt i·s pre.Seri-L _A tine-f.!£ clurP.mosome
'repr:esentati:on or the etwor}< i_s. u_secl: 'Q.y genetiC gperntb_l:s, whicQ
allow th¢ voJution of.the chitecture and' weight-s Â
... Show MoreThe introduction of Industry 4.0, to improve Internet of Things (IoT) standards, has sparked the creation of 5G, or highly sophisticated wireless networks. There are several barriers standing in the way of 5G green communication systems satisfying the expectations for faster networks, more user capacity, lower resource consumption, and cost‐effectiveness. 5G standards implementation would speed up data transmission and increase the reliability of connected devices for Industry 4.0 applications. The demand for intelligent healthcare systems has increased globally as a result of the introduction of the novel COVID‐19. Designing 5G communication systems presents research problems such as optimizing
The possibility of predicting the mass transfer controlled CaCO3 scale removal rate has been investigated.
Experiments were carried out using chelating agents as a cleaning solution at different time and Reynolds’s number. The results of CaCO3 scale removal or (mass transfer rate) (as it is the controlling process) are compared with proposed model of prandtl’s and Taylor particularly based on the concept of analogy among momentum and mass transfer.
Correlation for the variation of Sherwood number ( or mass transfer rate ) with Reynolds’s number have been obtained .