Palm vein recognition is a one of the most efficient biometric technologies, each individual can be identified through its veins unique characteristics, palm vein acquisition techniques is either contact based or contactless based, as the individual's hand contact or not the peg of the palm imaging device, the needs a contactless palm vein system in modern applications rise tow problems, the pose variations (rotation, scaling and translation transformations) since the imaging device cannot aligned correctly with the surface of the palm, and a delay of matching process especially for large systems, trying to solve these problems. This paper proposed a pose invariant identification system for contactless palm vein which include three main steps, at first data augmentation is done by making multiple copies of the input image then perform out-of-plane rotation on them around all the X,Y and Z axes. Then a new fast extract Region of Interest (ROI) algorithm is proposed for cropping palm region. Finally, features are extracted and classified by specific structure of Convolutional Neural Network (CNN). The system is tested on two public multispectral palm vein databases (PolyU and CASIA); furthermore, synthetic datasets are derived from these mentioned databases, to simulate the hand out-of-plane rotation in random angels within range from -20° to +20° degrees. To study several situations of pose invariant, twelve experiments are performed on all datasets, highest accuracy achieved is 99.73% ∓ 0.27 on PolyU datasets and 98 % ∓ 1 on CASIA datasets, with very fast identification process, about 0.01 second for identifying an individual, which proves system efficiency in contactless palm vein problems.
Internal control system is a safety valve that preserves economic units assets and ensure the accuracy of financial data, as well as to obligation in the laws, regulations, administrative policies ,and improve the efficiency, effectiveness and economic of operation, so it has become imperative for these units attention to internal and developed control system The research problem in exposure the economic units when the exercise of their business to many of the risks to growth or hinder the achievement of its objectives and the risks (financial, operational, strategy, risk) and not it rely on risk Assessment according to modern scientific methods, as in Brown's risk Classification, Which led to the weakness of the internal control identif
... Show More<span lang="EN-US">The need for robotics systems has become an urgent necessity in various fields, especially in video surveillance and live broadcasting systems. The main goal of this work is to design and implement a rover robotic monitoring system based on raspberry pi 4 model B to control this overall system and display a live video by using a webcam (USB camera) as well as using you only look once algorithm-version five (YOLOv5) to detect, recognize and display objects in real-time. This deep learning algorithm is highly accurate and fast and is implemented by Python, OpenCV, PyTorch codes and the Context Object Detection Task (COCO) 2020 dataset. This robot can move in all directions and in different places especially in
... Show MoreCar drivers hear many kinds of noise inside their vehicles' cabins, and the most annoying ones are the noise generated by tires, engines, and outside winds. Noise affects the comfort of the passengers inside the cabin, and it’s sad to say that modern cars are noisier in many kinds of noise signals due to using a lot of plastic materials in new budget cars. For expensive and luxury cars, the problem is solved by using better sound insulation materials, but for the budget ones, the approach used here is effective. It is called Active Noise Cancellation and can be done using analog or digital electronics. An operational amplifier and filters are used for the analog one, and in the digital one, signal processor chips are used. In engineeri
... Show MoreG-system composed of three isolates G3 ( Bacillus),G12 ( Arthrobacter )and G27 ( Brevibacterium) was used to detect the mutagenicity of the anticancer drug, cyclophosphamide (CP) under conditions similar to that used for standard mutagen, Nitrosoguanidine (NTG). The CP effected the survival fraction of isolates after treatment for 15 mins using gradual increasing concentrations, but at less extent comparing to NTG. The mutagenic effect of CP was at higher level than that of NTG when using streptomycin as a genetic marker, but the situation was reversed when using rifampicin resistant as a report marker. The latter effect appeared upon recording the mutagen efficiency (ie., number of induced mutants/microgram of mutagen). Measuring the R
... Show MoreGrass trimming operation is widely done in Malaysia for the purpose of maintaining highways. Large number of operators engaged in this work encounters high level of noise generated by back pack type grass trimmer used for this purpose. High level of noise exposure gives different kinds of ill effect on human operators. Exact nature of deteriorated work performance is not known. For predicting the work efficiency deterioration, fuzzy tool has been used in present research. It has been established that a fuzzy computing system will help in identification and analysis of fuzzy models fuzzy system offers a convenient way of representing the relationships between the inputs and outputs of a system in the form of IF-THEN rules. The paper presents
... Show MoreWhen optimizing the performance of neural network-based chatbots, determining the optimizer is one of the most important aspects. Optimizers primarily control the adjustment of model parameters such as weight and bias to minimize a loss function during training. Adaptive optimizers such as ADAM have become a standard choice and are widely used for their invariant parameter updates' magnitudes concerning gradient scale variations, but often pose generalization problems. Alternatively, Stochastic Gradient Descent (SGD) with Momentum and the extension of ADAM, the ADAMW, offers several advantages. This study aims to compare and examine the effects of these optimizers on the chatbot CST dataset. The effectiveness of each optimizer is evaluat
... Show MoreA Multiple System Biometric System Based on ECG Data
Background/Objectives: The purpose of this study was to classify Alzheimer’s disease (AD) patients from Normal Control (NC) patients using Magnetic Resonance Imaging (MRI). Methods/Statistical analysis: The performance evolution is carried out for 346 MR images from Alzheimer's Neuroimaging Initiative (ADNI) dataset. The classifier Deep Belief Network (DBN) is used for the function of classification. The network is trained using a sample training set, and the weights produced are then used to check the system's recognition capability. Findings: As a result, this paper presented a novel method of automated classification system for AD determination. The suggested method offers good performance of the experiments carried out show that the
... Show More