Abstract:In this paper, some probability characteristics functions (moments, variances,convariance, and spectral density functions) are found depending upon the smallestvariance of the solution of some stochastic Fredholm integral equation contains as aknown function, the sine wave function
Industrial characteristics calculations concentrated on the physical properties for break down voltage in sf6, cf4 gases and their mixture with different concentrations are presented in our work. Calculations are achieved by using an improved modern code simulated on windows technique. Our results give rise to a compatible agreement with the other experimental published data.
In this paper, making use of the q-R uscheweyh differential operator , and the notion of t h e J anowski f unction, we study some subclasses of holomorphic f- unction s . Moreover , we obtain so me geometric characterization like co efficient es timat es , rad ii of starlikeness ,distortion theorem , close- t o- convexity , con vexity, ext reme point s, neighborhoods, and the i nte gral mean inequalities of func tions affiliation to these c lasses
In this paper, we built a mathematical model for convection and thermal radiation heat transfer of fluid flowing through a vertical channel with porous medium under effects of horizontal magnetic field (MF) at the channel. This model represents a 2-dimensional system of non-linear partial differential equations. Then, we solved this system numerically by finite difference methods using Alternating Direction Implicit (ADI) Scheme in two phases (steady state and unsteady state). Moreover, we found the distribution and behaviour of the heat temperature inside the channel and studied the effects of Brinkman number, Reynolds number, and Boltzmann number on the heat temperature behaviour. We solved the system by buildi
... Show MoreTo obtain the approximate solution to Riccati matrix differential equations, a new variational iteration approach was proposed, which is suggested to improve the accuracy and increase the convergence rate of the approximate solutons to the exact solution. This technique was found to give very accurate results in a few number of iterations. In this paper, the modified approaches were derived to give modified solutions of proposed and used and the convergence analysis to the exact solution of the derived sequence of approximate solutions is also stated and proved. Two examples were also solved, which shows the reliability and applicability of the proposed approach.
Home Computer and Information Science 2009 Chapter The Stochastic Network Calculus Methodology Deah J. Kadhim, Saba Q. Jobbar, Wei Liu & Wenqing Cheng Chapter 568 Accesses 1 Citations Part of the Studies in Computational Intelligence book series (SCI,volume 208) Abstract The stochastic network calculus is an evolving new methodology for backlog and delay analysis of networks that can account for statistical multiplexing gain. This paper advances the stochastic network calculus by deriving a network service curve, which expresses the service given to a flow by the network as a whole in terms of a probabilistic bound. The presented network service curve permits the calculation of statistical end-to-end delay and backlog bounds for broad
... Show MoreIn this paper we introduced a new type of integrals based on binary element sets “a generalized integral of Shilkret and Choquet integrals” that combined the two kinds of aggregation functions which are Shilkret and Choquet integrals. Then, we gave some properties of that integral. Finally, we illustrated our integral in a numerical example.
.
Change the morphological characteristics with the change of the factors affecting it has been shown that the Tigris River has the characteristics of the morphology of the low values in terms of depth, width and perimeter wet and gradient which in turn affected the morphological and other characteristics in terms of the direction and pattern of runoff came through the study of 48 cross-section is taken of the Tigris River Year 2008 by section for each 1 km, it has been shown that the average width of the Tigris River does not exceed 221.1 meters and the average depth of 3.9 meters either wet ocean amounted to 268.9 meters and changed the cross-section area of the last section at a rate of 4594.3 square meters, and through the study turned
... Show MoreThe aim of this paper is adopted to give an approximate solution for advection dispersion equation of time fractional order derivative by using the Chebyshev wavelets-Galerkin Method . The Chebyshev wavelet and Galerkin method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are described based on the Caputo sense. Illustrative examples are included to demonstrate the validity and applicability of the proposed technique.
The objective of this study is to examine the properties of Bayes estimators of the shape parameter of the Power Function Distribution (PFD-I), by using two different prior distributions for the parameter θ and different loss functions that were compared with the maximum likelihood estimators. In many practical applications, we may have two different prior information about the prior distribution for the shape parameter of the Power Function Distribution, which influences the parameter estimation. So, we used two different kinds of conjugate priors of shape parameter θ of the <
... Show More