Preferred Language
Articles
/
bsj-1471
Comparison of Maximum Likelihood and some Bayes Estimators for Maxwell Distribution based on Non-informative Priors
...Show More Authors

In this paper, Bayes estimators of the parameter of Maxwell distribution have been derived along with maximum likelihood estimator. The non-informative priors; Jeffreys and the extension of Jeffreys prior information has been considered under two different loss functions, the squared error loss function and the modified squared error loss function for comparison purpose. A simulation study has been developed in order to gain an insight into the performance on small, moderate and large samples. The performance of these estimators has been explored numerically under different conditions. The efficiency for the estimators was compared according to the mean square error MSE. The results of comparison by MSE show that the efficiency of Bayes estimators of the shape parameter of the Maxwell distribution decreases with the increase of Jeffreys prior constants. The results also show that values of Bayes estimators are almost close to the maximum likelihood estimator when the Jeffreys prior constants are small, yet they are identical in some certain cases. Comparison with respect to loss functions show that Bayes estimators under the modified squared error loss function has greater MSE than the squared error loss function especially with the increase of r.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Sep 08 2020
Journal Name
Baghdad Science Journal
A Comparison Between Two Shape Parameters Estimators for (Burr-XII) Distribution
...Show More Authors

This paper deals with defining Burr-XII, and how to obtain its p.d.f., and CDF, since this distribution is one of failure distribution which is compound distribution from two failure models which are Gamma model and weibull model. Some equipment may have many important parts and the probability distributions representing which may be of different types, so found that Burr by its different compound formulas is the best model to be studied, and estimated its parameter to compute the mean time to failure rate. Here Burr-XII rather than other models is consider  because it is used to model a wide variety of phenomena including crop prices, household income, option market price distributions, risk and travel time. It has two shape-parame

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Thu Jun 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Bayes Analysis for the Scale Parameter of Gompertz Distribution
...Show More Authors

In this paper, we investigate the behavior of the bayes estimators, for the scale parameter of the Gompertz distribution under two different loss functions such as, the squared error loss function, the exponential loss function (proposed), based different double prior distributions represented as erlang with inverse levy prior, erlang with non-informative prior, inverse levy with non-informative prior and erlang with chi-square prior.

The simulation method was fulfilled to obtain the results, including the estimated values and the mean square error (MSE) for the scale parameter of the Gompertz distribution, for different cases for the scale parameter of the Gompertz distr

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Baghdad Science Journal
Comparison of Some Suggested Estimators Based on Differencing Technique in the Partial Linear Model Using Simulation
...Show More Authors

In this paper new methods were presented based on technique of differences which is the difference- based modified jackknifed generalized ridge regression estimator(DMJGR) and difference-based generalized  jackknifed ridge regression estimator(DGJR), in estimating the parameters of linear part of the partially linear model. As for the nonlinear part represented by the nonparametric function, it was estimated using Nadaraya Watson smoother. The partially linear model was compared using these proposed methods with other estimators based on differencing technique through the MSE comparison criterion in simulation study.

View Publication Preview PDF
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Sep 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
A comparison Of Some Semiparametric Estimators For consumption function Regression
...Show More Authors

    This article aims to explore the importance of estimating the a semiparametric regression function ,where we suggest a new estimator beside the other combined estimators and then we make a comparison among them by using simulation technique . Through the simulation results we find  that the suggest estimator is the best with the first and second models ,wherealse for the third model we find Burman and Chaudhuri (B&C) is best.

View Publication Preview PDF
Crossref
Publication Date
Tue Oct 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Comparing Between Shrinkage &Maximum likelihood Method For Estimation Parameters &Reliability Function With 3- Parameter Weibull Distribution By Using Simulation
...Show More Authors

The 3-parameter Weibull distribution is used as a model for failure since this distribution is proper when the failure rate somewhat high in starting operation and these rates will be decreased with increasing time .

In practical side a comparison was made between (Shrinkage and Maximum likelihood) Estimators for parameter and reliability function using simulation , we conclude that the Shrinkage estimators for parameters are better than maximum likelihood estimators but the maximum likelihood estimator for reliability function is the better using statistical measures (MAPE)and (MSE) and for different sample sizes.

Note:- ns : small sample ; nm=median sample

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
An Efficient Shrinkage Estimators For Generalized Inverse Rayleigh Distribution Based On Bounded And Series Stress-Strength Models
...Show More Authors
Abstract<p>In this paper, we investigate two stress-strength models (Bounded and Series) in systems reliability based on Generalized Inverse Rayleigh distribution. To obtain some estimates of shrinkage estimators, Bayesian methods under informative and non-informative assumptions are used. For comparison of the presented methods, Monte Carlo simulations based on the Mean squared Error criteria are applied.</p>
View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Tue Jun 01 2021
Journal Name
International Journal Of Nonlinear Analysis And Applications
Bayes estimators of a multivariate generalized hyperbolic partial regression model
...Show More Authors

View Publication
Scopus (1)
Scopus
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Poisson Regression and Conway Maxwell Poisson Models Using Simulation
...Show More Authors

Regression models are one of the most important models used in modern studies, especially research and health studies because of the important results they achieve. Two regression models were used: Poisson Regression Model and Conway-Max Well-  Poisson), where this study aimed to make a comparison between the two models and choose the best one between them using the simulation method and at different sample sizes (n = 25,50,100) and with repetitions (r = 1000). The Matlab program was adopted.) to conduct a simulation experiment, where the results showed the superiority of the Poisson model through the mean square error criterion (MSE) and also through the Akaiki criterion (AIC) for the same distribution.

Paper type:

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Mar 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Using Iterative Reweighting Algorithm and Genetic Algorithm to Calculate The Estimation of The Parameters Of The Maximum Likelihood of The Skew Normal Distribution
...Show More Authors

Excessive skewness which occurs sometimes in the data is represented as an obstacle against normal distribution. So, recent studies have witnessed activity in studying the skew-normal distribution (SND) that matches the skewness data which is regarded as a special case of the normal distribution with additional skewness parameter (α), which gives more flexibility to the normal distribution. When estimating the parameters of (SND), we face the problem of the non-linear equation and by using the method of Maximum Likelihood estimation (ML) their solutions will be inaccurate and unreliable. To solve this problem, two methods can be used that are: the genetic algorithm (GA) and the iterative reweighting algorithm (IR) based on the M

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Dec 31 2019
Journal Name
Journal Of Economics And Administrative Sciences
Comparing Different Estimators for the shape Parameter and the Reliability function of Kumaraswamy Distribution
...Show More Authors

In this paper, we used maximum likelihood method and the Bayesian method to estimate the shape parameter (θ), and reliability function (R(t)) of the Kumaraswamy distribution with two parameters l , θ (under assuming the exponential distribution, Chi-squared distribution and Erlang-2 type distribution as prior distributions), in addition to that we used method of moments for estimating the parameters of the prior distributions. Bayes

... Show More
View Publication Preview PDF
Crossref