Preferred Language
Articles
/
bsj-1458
Extraction and Determination of Amygdaline in Iraqi Plant Seeds Using the Combined Simple Extraction Procedure and High-Performance Liquid Chromatography
...Show More Authors

Abstract :In this study, amygdaline in Iraqi plant seeds was extracted and isolated from their seeds matrix using reflux procedure and subsequently identified and determined by high performance liquid chromatography (HPLC) on reversed phase column of LC-18 (150mm x 4.6mm, 5?m )with actonitrile :water ( 50 : 50 ) as mobile phase at flow rate of ( 0.5 mL/min ) and detection at wavelength of 215 nm.The experimental results indicated that the linearity of calibration is in the range of 1.0-30.0 mg L-1amygdaline with the correlation coefficient of 0.9949. The limit of detection (LOD) and limit of quantitation (LOQ) for amygdaline were of 0.88 and 2.93 mg L-1 in standard pure sample. The mean recovery percent is 97.34±0.58 at 95% confidence interval and relative standard deviation in the range of 1.19-2.08 %. The content of amygdaline in plant samples was 4.60± 0.47 g /100 g, and 0.27±0.029 g/100g of apricot and citrullus colocynth respectively.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jun 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Different Methods for Estimating Location Parameter & Scale Parameter for Extreme Value Distribution
...Show More Authors

      In this study, different methods were used for estimating location parameter  and scale parameter for extreme value distribution, such as maximum likelihood estimation (MLE) , method of moment  estimation (ME),and approximation  estimators based on percentiles which is called white method in estimation, as the extreme value distribution is one of exponential distributions. Least squares estimation (OLS) was used, weighted least squares estimation (WLS), ridge regression estimation (Rig), and adjusted ridge regression estimation (ARig) were used. Two parameters for expected value to the percentile  as estimation for distribution f

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Economics And Administrative Sciences
Fuzzy Bridge Regression Model Estimating via Simulation
...Show More Authors

      The main problem when dealing with fuzzy data variables is that it cannot be formed by a model that represents the data through the method of Fuzzy Least Squares Estimator (FLSE) which gives false estimates of the invalidity of the method in the case of the existence of the problem of multicollinearity. To overcome this problem, the Fuzzy Bridge Regression Estimator (FBRE) Method was relied upon to estimate a fuzzy linear regression model by triangular fuzzy numbers. Moreover, the detection of the problem of multicollinearity in the fuzzy data can be done by using Variance Inflation Factor when the inputs variable of the model crisp, output variable, and parameters are fuzzed. The results were compared usin

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Different Estimation Methods for System Reliability Multi-Components model: Exponentiated Weibull Distribution
...Show More Authors

        In this paper, estimation of system reliability of the multi-components in stress-strength model R(s,k) is considered, when the stress and strength are independent random variables and follows the Exponentiated Weibull Distribution (EWD) with known first shape parameter θ and, the second shape parameter α is unknown using different estimation methods. Comparisons among the proposed estimators through  Monte Carlo simulation technique were made depend on mean squared error (MSE)  criteria

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Aug 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
مقارنة مقدرات بيز لدالة المعولية لتوزيع باريتو من النوع الاول باستعمال دوال معلوماتية مضاعفة مختلفة
...Show More Authors

The comparison of double informative priors which are assumed for the reliability function of Pareto type I distribution. To estimate the reliability function of Pareto type I distribution by using Bayes estimation, will be  used two different kind of information in the Bayes estimation; two different priors have been selected for the parameter of Pareto  type I distribution . Assuming distribution of three double prior’s chi- gamma squared distribution, gamma - erlang distribution, and erlang- exponential distribution as double priors. The results of the derivaties of these estimators under the squared error loss function with two different double priors. Using the simulation technique, to compare the performance for

... Show More
View Publication Preview PDF
Crossref