This deals with estimation of Reliability function and one shape parameter (?) of two- parameters Burr – XII , when ?(shape parameter is known) (?=0.5,1,1.5) and also the initial values of (?=1), while different sample shze n= 10, 20, 30, 50) bare used. The results depend on empirical study through simulation experiments are applied to compare the four methods of estimation, as well as computing the reliability function . The results of Mean square error indicates that Jacknif estimator is better than other three estimators , for all sample size and parameter values
Exponential Distribution is probably the most important distribution in reliability work. In this paper, estimating the scale parameter of an exponential distribution was proposed through out employing maximum likelihood estimator and probability plot methods for different samples size. Mean square error was implemented as an indicator of performance for assumed several values of the parameter and computer simulation has been carried out to analysis the obtained results
In this research estimated the parameters of Gumbel distribution Type 1 for Maximum values through the use of two estimation methods:- Moments (MoM) and Modification Moments(MM) Method. the Simulation used for comparison between each of the estimation methods to reach the best method to estimate the parameters where the simulation was to generate random data follow Gumbel distributiondepending on three models of the real values of the parameters for different sample sizes with samples of replicate (R=500).The results of the assessment were put in tables prepared for the purpose of comparison, which made depending on the mean squares error (MSE).
In this paper was discussed the process of compounding two distributions using new compounding procedure which is connect a number of life time distributions ( continuous distribution ) where is the number of these distributions represent random variable distributed according to one of the discrete random distributions . Based on this procedure have been compounding zero – truncated poisson distribution with weibell distribution to produce new life time distribution having three parameter , Advantage of that failure rate function having many cases ( increasing , dicreasing , unimodal , bathtube) , and study the resulting distribution properties such as : expectation , variance , comulative function , reliability function and fa
... Show MoreThe experiences in the life are considered important for many fields, such as industry, medical and others. In literature, researchers are focused on flexible lifetime distribution.
In this paper, some Bayesian estimators for the unknown scale parameter of Inverse Rayleigh Distribution have been obtained, of different two loss functions, represented by Suggested and Generalized loss function based on Non-Informative prior using Jeffery's and informative prior represented by Exponential distribution. The performance of estimators is compared empirically with Maximum Likelihood estimator, Using Monte Carlo Simulation depending on the Mean Square Error (MSE). Generally, the preference of Bayesian method of Suggeste
... Show MoreThis paper is devoted to compare the performance of non-Bayesian estimators represented by the Maximum likelihood estimator of the scale parameter and reliability function of inverse Rayleigh distribution with Bayesian estimators obtained under two types of loss function specifically; the linear, exponential (LINEX) loss function and Entropy loss function, taking into consideration the informative and non-informative priors. The performance of such estimators assessed on the basis of mean square error (MSE) criterion. The Monte Carlo simulation experiments are conducted in order to obtain the required results.
In this paper, we derived an estimators and parameters of Reliability and Hazard function of new mix distribution ( Rayleigh- Logarithmic) with two parameters and increasing failure rate using Bayes Method with Square Error Loss function and Jeffery and conditional probability random variable of observation. The main objective of this study is to find the efficiency of the derived of Bayesian estimator compared to the to the Maximum Likelihood of this function using Simulation technique by Monte Carlo method under different Rayleigh- Logarithmic parameter and sample sizes. The consequences have shown that Bayes estimator has been more efficient than the maximum likelihood estimator in all sample sizes with application
The present paper concern with minimax shrinkage estimator technique in order to estimate Burr X distribution shape parameter, when prior information about the real shape obtainable as original estimate while known scale parameter.
Derivation for Bias Ratio, Mean squared error and the Relative Efficiency equations.
Numerical results and conclusions for the expressions mentioned above were displayed. Comparisons for proposed estimator with most recent works were made.
Methods of estimating statistical distribution have attracted many researchers when it comes to fitting a specific distribution to data. However, when the data belong to more than one component, a popular distribution cannot be fitted to such data. To tackle this issue, mixture models are fitted by choosing the correct number of components that represent the data. This can be obvious in lifetime processes that are involved in a wide range of engineering applications as well as biological systems. In this paper, we introduce an application of estimating a finite mixture of Inverse Rayleigh distribution by the use of the Bayesian framework when considering the model as Markov chain Monte Carlo (MCMC). We employed the Gibbs sampler and
... Show MoreIn the current study, the researchers have been obtained Bayes estimators for the shape and scale parameters of Gamma distribution under the precautionary loss function, assuming the priors, represented by Gamma and Exponential priors for the shape and scale parameters respectively. Moment, Maximum likelihood estimators and Lindley’s approximation have been used effectively in Bayesian estimation.
Based on Monte Carlo simulation method, those estimators are compared depending on the mean squared errors (MSE’s). The results show that, the performance of Bayes estimator under precautionary loss function with Gamma and Exponential priors is better than other estimates in all cases.
Abstract
We produced a study in Estimation for Reliability of the Exponential distribution based on the Bayesian approach. These estimates are derived using Bayesian approaches. In the Bayesian approach, the parameter of the Exponential distribution is assumed to be random variable .we derived bayes estimators of reliability under four types when the prior distribution for the scale parameter of the Exponential distribution is: Inverse Chi-squar
... Show More