This paper is dealing with non-polynomial spline functions "generalized spline" to find the approximate solution of linear Volterra integro-differential equations of the second kind and extension of this work to solve system of linear Volterra integro-differential equations. The performance of generalized spline functions are illustrated in test examples
Freedom of opinion and expression occupy the first place among the concerns of countries and international organizations. And it is also the basis of contemporary freedom because it is the foundation for achieving freedom in other fields such as politics, economics, education, etc.. The constitutions of the state have ensured that almost the entire freedom to express an opinion in all its forms either orally or writing or images of expressions, but these freedoms are identified within the law. Most countries announced their commitment to the international conventions and texts issued by international and regional organization like the Universal Declaration of Human Rights in 1948, and the International Covenant on Civil and Political Rig
... Show MoreThe current study examined the effect of different sample sizes to detect the Item differential functioning (DIF). The study has used three different sizes of the samples (300, 500, 1000), as well as to test a component of twenty polytomous items, where each item has five categories. They were used Graded Response Model as a single polytomous item response theory model to estimate items and individuals’ parameters. The study has used the Mantel-Haenszel (MH) way to detect (DIF) through each case for the different samples. The results of the study showed the inverse relationship between the sample size and the number of items, which showed a differential performer.
The purpose behind building the linear regression model is to describe the real linear relation between any explanatory variable in the model and the dependent one, on the basis of the fact that the dependent variable is a linear function of the explanatory variables and one can use it for prediction and control. This purpose does not cometrue without getting significant, stable and reasonable estimatros for the parameters of the model, specifically regression-coefficients. The researcher found that "RUF" the criterian that he had suggested accurate and sufficient to accomplish that purpose when multicollinearity exists provided that the adequate model that satisfies the standard assumpitions of the error-term can be assigned. It
... Show MoreThe theory of probabilistic programming may be conceived in several different ways. As a method of programming it analyses the implications of probabilistic variations in the parameter space of linear or nonlinear programming model. The generating mechanism of such probabilistic variations in the economic models may be due to incomplete information about changes in demand, production and technology, specification errors about the econometric relations presumed for different economic agents, uncertainty of various sorts and the consequences of imperfect aggregation or disaggregating of economic variables. In this Research we discuss the probabilistic programming problem when the coefficient bi is random variable
... Show MoreThe aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).
In this paper we study and design two feed forward neural networks. The first approach uses radial basis function network and second approach uses wavelet basis function network to approximate the mapping from the input to the output space. The trained networks are then used in an conjugate gradient algorithm to estimate the output. These neural networks are then applied to solve differential equation. Results of applying these algorithms to several examples are presented