This paper is dealing with non-polynomial spline functions "generalized spline" to find the approximate solution of linear Volterra integro-differential equations of the second kind and extension of this work to solve system of linear Volterra integro-differential equations. The performance of generalized spline functions are illustrated in test examples
ان الغرض من هذا البحث هو المزج بين القيود الضبابية والاحتمالية. كما يهدف الى مناقشة اكثر حالات مشكلات البرمجة الضبابية شيوعا وهي عندما تكون المشكلة الضبابية تتبع دالة الانتماء مرة دالة الاتنماء المثلثية مرة اخرى، من خلال التطبيق العملي والتجريبي. فضلا عن توظيف البرمجة الخطية الضبابية في معالجة مشكلات تخطيط وجدولة الإنتاج لشركة العراق لصناعة الأثاث، وكذلك تم استخدام الطرائق الكمية للتنبؤ بالطلب واعتماده
... Show MoreMany researchers have tackled the shear behavior of Reinforced Concrete (RC) beams by using different kinds of strengthening in the shear regions and steel fibers. In the current paper, the effect of multiple parameters, such as using one percentage of Steel Fibers (SF) with and without stirrups, without stirrups and steel fibers, on the shear behavior of RC beams, has been studied and compared by using Finite Element analysis (FE). Three-dimensional (3D) models of (RC) beams are developed and analyzed using ABAQUS commercial software. The models were validated by comparing their results with the experimental test. The total number of beams that were modeled for validation purposes was four. Extensive pa
... Show MoreThe aim of this paper is to propose an efficient three steps iterative method for finding the zeros of the nonlinear equation f(x)=0 . Starting with a suitably chosen , the method generates a sequence of iterates converging to the root. The convergence analysis is proved to establish its five order of convergence. Several examples are given to illustrate the efficiency of the proposed new method and its comparison with other methods.
The method of operational matrices based on different types of polynomials such as Bernstein, shifted Legendre and Bernoulli polynomials will be presented and implemented to solve the nonlinear Blasius equations approximately. The nonlinear differential equation will be converted into a system of nonlinear algebraic equations that can be solved using Mathematica®12. The efficiency of these methods has been studied by calculating the maximum error remainder ( ), and it was found that their efficiency increases as the polynomial degree (n) increases, since the errors decrease. Moreover, the approximate solutions obtained by the proposed methods are compared with the solution of the 4th order Runge-Kutta method (RK4), which gives very
... Show MoreThe Korteweg-de Vries equation plays an important role in fluid physics and applied mathematics. This equation is a fundamental within study of shallow water waves. Since these equations arise in many applications and physical phenomena, it is officially showed that this equation has solitary waves as solutions, The Korteweg-de Vries equation is utilized to characterize a long waves travelling in channels. The goal of this paper is to construct the new effective frequent relation to resolve these problems where the semi analytic iterative technique presents new enforcement to solve Korteweg-de Vries equations. The distinctive feature of this method is, it can be utilized to get approximate solutions for travelling waves of
... Show MoreIn this paper, the first integrals of Darboux type of the generalized Sprott ET9 chaotic system will be studied. This study showed that the system has no polynomial, rational, analytic and Darboux first integrals for any value of . All the Darboux polynomials for this system were derived together with its exponential factors. Using the weight homogenous polynomials helped us prove the process.